Refine Your Search

Search Results

Viewing 1 to 3 of 3
Journal Article

Analysis of Real World Data from a Range Extended Electric Vehicle Demonstrator

2014-10-13
2014-01-2887
MAHLE Powertrain has built a range-extended electric vehicle demonstrator, with a series hybrid configuration. The vehicle is intended to operate predominantly purely electrically. Once the battery state of charge is depleted a gasoline engine (range extender) is activated to provide the energy required to propel the vehicle. As part of the continuing development of this vehicle, MAHLE Powertrain has recorded data during real world driving, with the aim of further investigating the actual usage a range-extended electric vehicle under non-laboratory test conditions. The vehicle is instrumented with a data acquisition system which records physical parameters, for example coolant temperatures, as well as CAN-based data from the engine and vehicle management systems.
Technical Paper

Development of a Light-Duty Commercial Vehicle Demonstrator Featuring a Low-Cost PCB Fuel Cell

2022-03-29
2022-01-0696
Today the light-duty commercial market is dominated by internal combustion engine powered vehicles, primarily diesel-powered delivery vans, which contribute to urban air quality issues. Global concerns regarding climate change have prompted zero emission vehicles to be mandatory in many markets as soon as 2035. For the light-duty commercial vehicle sector there is significant interest in pure electric vehicles. However, for some markets, or usage cases, electric vehicles may not be the best solution due to practical limitations of battery energy storage capacity or recharging times. For such applications there is growing interest in hydrogen fuel cells as a zero emissions alternative. Bramble Energy’s patented printed circuit board (PCB) fuel cell technology (PCBFC™) enables the use of cost-effective production methods and materials from the PCB industry to reduce the cost and complexity of manufacturing hydrogen fuel cell stacks.
Technical Paper

GPS Based Energy Management Control for Plug-in Hybrid Vehicles

2015-04-14
2015-01-1226
In 2012 MAHLE Powertrain developed a range-extended electric vehicle (REEV) demonstrator, based on a series hybrid configuration, and uses a battery to store electrical energy from the grid. Once the battery state of charge (SOC) is depleted a gasoline engine (range extender) is activated to provide the energy required to propel the vehicle. As part of the continuing development of this vehicle, MAHLE Powertrain has developed control software which can intelligently manage the use of the battery energy through the combined use of GPS and road topographical data. Advanced knowledge of the route prior to the start of a journey enables the software to calculate the SOC throughout the journey and pre-determine the optimum operating strategy for the range extender to enable best charging efficiency and minimize NVH. The software can also operate without a pre-determined route being selected.
X