Refine Your Search

Topic

Author

Search Results

Technical Paper

A Cost-Effective Approach to Attain Near-Vehicle Conditions in Coolant Circuit of Engine Test Bench

2022-10-05
2022-28-0084
With advancement of technologies, upgradation of validation procedures and equipment on engine dynamometer test bed is required to simulate environment similar to vehicle and achieve accurate test results. A coolant conditioning system helps in achieving desired temperatures of coolant in the circuit during engine validation. However, unlike radiator type cooling systems of vehicles, conventional coolant conditioning systems on engine test beds generate negative pressure in circuit which poses a risk of coolant boiling, loss of intended heat transfer and hence higher temperature in cylinder head which can be detrimental for durability of critical components like valves, valve seats etc. This paper encompasses a stepwise approach followed to attain near-vehicle coolant pressure conditions for a naturally aspirated engine. Coolant used for this experiment was 50:50 (by volume) ethylene glycol and water mixture.
Technical Paper

A Methodology to Enhance the Directional Load Bearing Performance of Cowl Cover and Its Effect on Pedestrian Head Impact

2020-04-14
2020-01-0911
In the modern automobile scenario in developing countries, customers are getting more meticulous and market more competitive. Now even the budget vehicle customer expects desirable vehicle performance in specific use cases of the vehicle that were previously not focused by designers. Hence, the focus on perceived quality challenges automobile engineers to go the extra mile when it comes to the cost-effective design of parts that are tangible to the customer. A vehicle's cowl cover is one such exterior component. The primary functions of this part are to provide air intake opening for the HVAC system and cover the components like wiper motor. The aesthetic function is to cover the gaps between windshield, hood, and fender as seamlessly as possible. A specific role of cowl cover, which calls for a designer's attention, is its load-bearing capability.
Technical Paper

A Study of Engine Mount Optimisation of Three-Cylinder Engine through Multi-Body Dynamic Simulation and Its Verification by Vehicle Measurement

2015-01-14
2015-26-0126
Three-cylinder Engine without balancer shaft is a recent trend towards development of lightweight and fuel-efficient powertrain for passenger car. In addition, customer's expectation of superior NVH inside vehicle cabin is increasing day by day. Engine mounts address majority of the NVH issues related to transfer of vibration from engine to passenger cabin. Idle vibration isolation for a three-cylinder engine is a challenging task due to possibility of overlapping of Powertrain's rigid body modes with engine's firing frequency. This Overlapping of rigid body can be avoided either by modifying mount characteristic or by changing the position of mounts based on multi-body-dynamics (MBD) simulation. This paper explains about two types of engine mounting system for a front-wheel drive transversely mounted three-cylinder engine. The base vehicle was having three-point mounting system i.e. all three engine mounts were pre-loaded.
Technical Paper

A Study on the Impact of Corrosion under Insulation (CUI) on the Acoustic Performance of an Absorptive Muffler of Automobiles

2023-05-08
2023-01-1087
Automobile exhaust systems help to attenuate the engine combustion noise as well as the high frequency flow noises which are generated as the gas expands and contracts through various ducts and orifices of muffler system. One of the solutions to mitigate the noise generated due to the latter is by means of an absorptive muffler, comprising a fibrous acoustic medium which helps to absorb noise of certain frequencies which are sensitive to the human ear. Typically, the construction of such a system consists of the fibrous acoustic medium encompassing a perforated inner pipe on the inside and enclosed by an outer metal case on the outside. The temperature limitations of the acoustic medium sometimes necessitate the placement of the fibrous acoustic system away from the engine source in order to prevent any damage to the fibers upon direct contact with the flue gas.
Technical Paper

Aerodynamic Design Optimization in Rear End of a Hatchback Passenger Vehicle

2019-03-25
2019-01-1430
Aerodynamic evaluation plays an important role in the new vehicle development process to meet the ever increasing demand of Fuel Economy (FE), superior aero acoustics and thermal performance. Computational Fluid Dynamics (CFD) is extensively used to evaluate the performance of the vehicle at early design stage to overcome cost of proto-parts, late design changes and for time line adherence. CFD is extensively used to optimize the vehicle’s shape, profiles and design features starting from the concept stage to improve the vehicle’s aerodynamic performance. Since the shape of the vehicle determines the flow behavior around it, the performance is different for hatchback, notchback and SUV type of vehicles. In a hatchback vehicle, the roof line is abruptly truncated at the end, which causes flow separation and increase in drag.
Technical Paper

Aerodynamic Development of Maruti Suzuki Vitara Brezza using CFD Simulations

2017-01-10
2017-26-0268
Recent automotive trend shows that customer demand is moving towards bigger size vehicle with more comfort, space, safety, feature and technology. Global market of SUV is projected to surpass 21 million units by 2020. Despite economic slowdown and weak new car sales worldwide, India and China will continue to be primary market for SUV due to sheer size of population, urban expanding middle class and larger untapped rural market. However, stricter emission norms push for clean and green technology and unfavorable policy towards use of diesel vehicle has made the SUV design very challenging due to conflicting needs. Due to bigger size of vehicle, aerodynamic design plays an important role in achieving emission targets and higher fuel efficiency. This paper highlights the aerodynamic development of Maruti Suzuki Vitara Brezza, which is an entry level SUV vehicle with high ground clearance of 198 mm and best in class fuel economy of 24.3 kmpl.
Technical Paper

An Experimental Approach to Investigate the FEAD Cover Failure & Its Design Optimization

2024-01-16
2024-26-0371
In automotive Front End Accessory Drives (FEAD), the crankshaft supplies power to accessories like alternators, pumps, etc. FEAD undergoes forced vibration due to crankshaft excitation, dynamic tension fluctuations can cause the belt to slip on the accessory pulleys. By considering the criticality of the system, when engine mounting is longitudinally to the vehicle which makes it directly exposed to the air flow containing foreign particles which may cause the damage to the FEAD system and deteriorate the intended functionality. FEAD cover is introduced in the system to enhance belt-pully system functionality by restricting the entry of foreign particles during engine operation. This paper contains a study of FEAD cover failure and provides the stepwise approach to capture such issue during novel model development for 4 cylinder naturally aspirated engine during engine bench testing.
Technical Paper

Analysis of Thermal Coating on Engine Performance Parameters & Fuel Economy of a Small Size NA Spark Ignition Engine

2021-09-15
2021-28-0134
With strict upcoming regulation norms, it becomes a challenging task for automotive industry to develop highly efficient engine that meets all the regulation requirements. The focus of automakers is to utilize fuel energy in most efficient way and to reduce the energy loss from the engine to improve thermal efficiency. Heat loss to the cooling medium is one of the prime losses inside the combustion chamber. Thermal barrier coating is used to reduce heat losses across combustion chamber surfaces (Piston, head, valves and cylinder liner) as it provides good insulation because of the prominent properties of coating materials like low thermal conductivity, low heat capacity, high melting point etc. This paper presents application and impact of thermal swing coating on thermal efficiency. Thermal swing coating material follows gas temperature quickly throughout the cycle which reduces the temperature difference between gas and coating surface and thus reduces the heat loss.
Technical Paper

Approach for CO2 Reduction in India’s Automotive Sector

2019-11-21
2019-28-2388
India has gone through a lot of transformation over the last decade. Today it is the 6th largest and one of the fastest growing economies in the world. Rising income level, increased consumerism, rapid growth in urbanization and digitization have attributed to this change. Government focus on “Make in India” for promoting trade and investment in India have ensured that India emerge as one of the largest growing economies in the world. The automotive industry played a pivotal role in the manufacturing sector to boost economic activities in India. The passenger car market has increased 3 times over the last decade and it has led to increased mobility options for many people across India. However, this has put concerns on the country’s energy security and emission levels. According to IEA’s recent report on global CO2 emission, 32.31 Gt of CO2 emissions were from fuel combustion in 2016, out of which transport sector contributed ~25%.
Technical Paper

CAE Approach for Radiator Bush Dynamic Simulation

2022-10-05
2022-28-0094
Radiators are one of the major components in the automotive engine cooling system. The road excitations from the frame to the radiator are dampened using rubber bushes. In this work, we analyzed a radiator sub-assembly with bushes by applying acceleration which are recorded at the center of gravity of the radiator. The radiator is considered as the concentrated mass which is attached to the upper and the lower radiator tank which is further connected to the frame through the bushings. An implicit transient dynamic analysis is set up. The hyper elastic coefficients for EPDM rubber are determined using the experimental data fit and structural damping coefficients are applied. When excited by the acceleration applied at center of the radiator component, the rubber bushes are deformed severely. Moreover, the analysis shows high strains in certain location on the upper bush where the part showed actual failure in the testing.
Technical Paper

CAE Transfer Path Analysis and Its Accuracy Evaluation Using a Validation Method

2024-04-09
2024-01-2740
In-cabin Noise at low frequency (due to engine or road excitation) is a major issue for NVH engineers. Usually, noise transfer function (NTF) analysis is carried out, due to absence of accurate actual loads for sound pressure level (SPL) analysis. But NTF analysis comes with the challenge of having too many paths (~20 trimmed body attachment locations: engine and suspension mounts, along with 3 directions for each) to work on, which is cumbersome. Physical test transfer path analysis (TPA) is a process of root cause analysis, by which critical contributing paths can be obtained for a problem peak frequency. In addition to that, loads at the attachment points of trimmed body of test vehicle can be derived. Both these outputs are conventionally used in CAE analysis to work on either NTF or SPL. The drawback of this conventional approach is that the critical bands and paths suggested are based on the problem peak frequency of test vehicle which may be different in CAE.
Technical Paper

CFD Simulation of Transmission for Lubrication Oil Flow Validation and Churning Loss Reduction

2020-04-14
2020-01-1089
Rapidly changing emission and fuel efficiency regulations are pushing the design optimization boundaries further in the Indian car market which is already a very cost conscious. Fuel economy can be improved by reducing moving parts friction and weight optimization. Driveline or Transmission power losses are major factor in overall efficiency of rotating parts in a vehicle. Transmission efficiency can be improved by using low viscosity oil, reducing oil quantity and reducing churning losses in car transmission. Changes like low viscosity and reduced oil volume give rise to challenges like compromised lubrication and durability of rotating parts. This further leads to extended design cycles for launching new cars with better transmission efficiency and fuel economy into the market. Design cycle time can be reduced by using CFD simulation for oil flow validation in the early design stage.
Technical Paper

Challenges in Developing Low Rolling Resistance Tyre

2015-03-10
2015-01-0053
Vehicles in India will soon come with star ratings, signifying how environment-friendly they are. The OEM's have braced to improve fuel economy of their existing & upcoming models. Tyre rolling resistance is one of the significant factors for vehicle fuel consumption. Improvement in Fuel consumption is always a prime focus area & to improve it all major factors are considered. In newly launched models, the low rolling resistance tyre development was initiated. The project is challenging as it requires not only achieving low rolling resistance in smaller size tyres (12″ to 13″) but also required to meet other critical vehicle performance parameters like ride, handling, NVH & durability. Effects of Tyre construction, rubber compound were analyzed to achieve lower rolling resistance and better durability of tyre. In addition, the factors affecting the rolling resistance of tyre like inflation pressure, load, and speed in smaller tyre sizes (12″ to 13″) are discussed in this paper.
Technical Paper

Challenges of Hydraulic Engine Mount Development for NVH Refinement

2018-04-03
2018-01-0681
NVH refinement of passenger vehicle is essential to customer acceptance for premium or even mid-size segment passenger cars. Hydraulic engine mount is becoming common for these segments to reduce engine bounce, idle shake and noise transfer to passenger cabin. Modern layout of hydraulic mount with integrated engine-bracket and smaller size insulator has made it cost-effective to use due to reduction of cost gap from conventional elastomeric mounts. However the downsizing and complex internal structure may create some new types of noises in passenger cabin which are very difficult to identify in initial development stage. Main purpose of hydraulic mount is to provide high damping at low-frequency range (6~15 Hz) and to isolate noise transfer from combustion engine to passenger cabin within wide frequency range (15~600 Hz).This paper emphasizes on challenges and problems related to hydraulic mount development.
Technical Paper

Design Considerations for Plastic Fuel Rail and Its Benefits

2014-04-01
2014-01-1041
Global automobile market is very sensitive to vehicle fuel economy. Gross vehicle weight has substantial effects on FE. Hence, for designers it becomes utmost important to work on the weight reduction ideas up to single component level. Fuel delivery pipe (Fuel Rail) is one such component where there is a big potential. Fuel rail is an integral part of the vehicle fuel system and is mounted on the engine. Primarily it serves as a channel of fuel supply from fuel tank through fuel lines to the multiple fuel injectors, which further sprays the fuel into intake ports at high pressure. Due to opening and closing of injectors, pulsations are generated in fuel lines, so fuel rail also acts as a surge tank as well as a pulsation damper. All these factors make the design of a fuel rail very critical and unique for a particular engine. Materials like aluminum, plastic and sheet metal are generally used for fuel rail manufacturing.
Technical Paper

Design Optimization of Engine Mount De-Coupler for Cabin Noise Refinement in Passenger Vehicle

2019-01-09
2019-26-0199
Quieter cabins are indispensable in today’s evolving automobile industry. The effective isolation of vehicle noise and vibrations are essential to achieve the above. Since, low frequency powertrain induced NVH has been one of the major contributors affecting noise and vibration levels inside the passenger cabin. Thus, use of hydraulic mounts is a natural choice for all major OEMs. The objective of this study is to optimize the design of the hydraulic mount de-coupler unit, to reduce the abnormal noise felt inside the cabin. This condition was observed when the vehicle was driven at 20~30 km/h over undulated road surface, found very often in Indian drive conditions. Due to lack of accuracy and repeatability errors during NVH data acquisition in actual driving condition, the above road profile was captured and subsequently simulated in an acoustically treated BSR (Buzz, Squeak and Rattle) four poster simulator.
Technical Paper

Design of Front Structure of Vehicle for Pedestrian Headform Protection

2017-03-28
2017-01-1298
Vehicle Hood being the face of a passenger car poses the challenge to meet the regulatory and aesthetic requirements. Urge to make a saleable product makes aesthetics a primary condition. This eventually makes the role of structure optimization much more important. Pedestrian protection- a recent development in the Indian automotive industry, known for dynamics of cost competitive cars, has posed the challenge to make passenger cars meeting the regulation at minimal cost. The paper demonstrates structure optimization of hood and design of peripheral parts for meeting pedestrian protection performance keeping the focus on low cost of ownership. The paper discusses development of an in-house methodology for meeting Headform compliance of a flagship model of Maruti Suzuki India Ltd., providing detailed analysis of the procedure followed from introduction stage of regulatory requirement in the project to final validation of the engineering intent.
Technical Paper

Development of Test Method to Validate Synchronizer Ring Design for Torsional Fluctuations in Manual Transmission

2016-02-01
2016-28-0012
Manual transmissions dominate the Indian market for their obvious benefit of low cost and higher mechanical efficiency resulting in higher fuel economy. Synchronizer system in manual transmission enables smoother and quieter gear shifting. Synchronizer ring is the key element which provides the necessary frictional torque to synchronize the speed of gear and sleeve for smooth shifting. During vehicle running, synchronizer rings are free to rattle inside the indexing clearance. High engine torsional excitation and low clutch dampening can result into increased fluctuation of the input shaft of transmission. High fluctuation or lower contact area of synchronizer ring can lead to damage on the index area. This damage may cause hard gear shifting and gear shift blockage in case of extreme damage.
Technical Paper

Dynamic Strength Co-Simulation for Valve Train Mechanism Design Virtual Validation

2020-04-14
2020-01-0949
As the automotive market is very dynamic and vehicle manufactures try to reduce the vehicle development cycle time, more focus is being given to CAE simulation technologies to reduce the design cycle time and number of physical tests. CAE engineers are continuously working on improving the accuracy of CAE simulation, such as using flexible body dynamic simulation in place of linear static analysis. Strength calculation under dynamic condition is more accurate as compared to static condition as it gives more clear understanding of stress variation with motion, contacts and mass inertia. Failure has been observed in new development of valve train pivot screw under test conditions. As per linear static analysis, design was judged OK. Normal linear static analysis is a two stage process. In first stage loads are calculated by hand or peak loads are taken from multibody dynamics (MBD) rigid body analysis.
Technical Paper

Effect of Compression and Air Fuel Ratio on the Flame Kernel Development

2015-01-14
2015-26-0020
Cycle to cycle variations is always a cause for concern in port injected SI engines. Earlier studies in this field suggest that cycle by cycle variations in the position and growth rate of flame kernel has a significant role in the cycle by cycle variations in the pressure curves. Researchers are always interested in understanding the fluid flow and combustion characteristics in a running engine to study these variations in detail. Due to its simplicity in adaptation, fiber optic spark plug enables the researchers to study the effects of charge motion on the developing flame kernel at relatively less cost and effort. In this paper 8 channel fiber optic spark plug was used to measure and understand the flame kernel development. Flush mounted pressure transducer is also installed to measure in cylinder pressure data.
X