Refine Your Search

Topic

Author

Search Results

Technical Paper

A CAD-Driven Flexible Forming System for Three-Dimensional Sheet Metal Parts

1993-03-01
930282
A novel system for the forming of three dimensional sheet metal parts is described that can form a variety of part shapes without the need for fixed tooling, and given only geometry (CAD) information about the desired part. The central elements of this system are a tooling concept based on a programmable discrete die surface and closed-loop shape control. The former give the process the degrees of freedom to change shape rapidly, and the latter is used to insure that the correct shape is formed with a minimum of forming trials. A 540 kN (60 ton) lab press has been constructed with a 0.3 m (12 in) square pair of discrete tools that can be rapidly re-shaped between forming trials. The shape control system uses measured part shapes to determine a shape error and to correct the tooling shape. This correction is based on a unique “Deformation Transfer Function” approach using a spatial frequency decomposition of the surface.
Technical Paper

A Look at the Automotive-Turbine Regenerator System and Proposals to Improve Performance and Reduce Cost

1997-02-24
970237
The adoption of turbine engines for automotive power plants has been hampered by the high cost, high leakage and high wear rate of present designs of ceramic-matrix regenerators. Proposals are made and analyzed here for design directions to achieve substantial improvements in all three areas. These include lower-cost extruded and pressed matrices; and clamping seals coupled with incremental movement of the rotary-regenerator matrix.
Technical Paper

A Model For Estimating Oil Vaporization From The Cylinder Liner As A Contributing Mechanism to Engine Oil Consumption

1999-05-03
1999-01-1520
A model has been developed for estimating the oil vaporization rate from the cylinder liner of a reciprocating engine. The model uses input from an external cycle simulator and an external liner oil film thickness model. It allows for the change in oil composition and the change in oil film thickness due to vaporization. It also estimates how the passage of the compression and scraper rings combine with the vaporization to influence the steady-state composition of the oil layer in the upper ring pack. Computer model results are presented for a compression-ignition engine using a range of liner temperatures, several engine speeds, and two different oils. Vaporization is found to be highly dependent on liner temperature and steady-state oil composition. The steady-state oil composition near the top of the cylinder is found to be significantly different than the composition of the oil near the bottom of the cylinder.
Technical Paper

A Piston Ring-Pack Film Thickness and Friction Model for Multigrade Oils and Rough Surfaces

1996-10-01
962032
A complete one-dimensional mixed lubrication model has been developed to predict oil film thickness and friction of the piston ring-pack. An average flow model and a roughness contact model are used to consider the effects of surface roughness on both hydrodynamic and boundary lubrication. Effects of shear-thinning and liner temperature on lubricant viscosity are included. An inlet condition is applied by considering the unsteady wetting location at the leading edge of the ring. A ‘film non-separation’ exit condition is proposed to replace Reynolds exit condition when the oil squeezing becomes dominant. Three lubrication modes are considered in the model, namely, pure hydrodynamic, mixed, and pure boundary lubrication. All of these considerations are crucial for studying the oil transport, asperity contact, and friction especially in the top dead center (TDC) region where the oil control ring cannot reach.
Technical Paper

Additional Findings on the Multi-Modal Demands of “Voice-Command” Interfaces

2016-04-05
2016-01-1428
This paper presents the results of a study of how people interacted with a production voice-command based interface while driving on public roadways. Tasks included phone contact calling, full address destination entry, and point-of-interest (POI) selection. Baseline driving and driving while engaging in multiple-levels of an auditory-vocal cognitive reference task and manual radio tuning were used as comparison points. Measures included self-reported workload, task performance, physiological arousal, glance behavior, and vehicle control for an analysis sample of 48 participants (gender balanced across ages 21-68). Task analysis and glance measures confirm earlier findings that voice-command interfaces do not always allow the driver to keep their hands on the wheel and eyes on the road, as some assume.
Technical Paper

Alcohol Fueled Heavy Duty Vehicles Using Clean, High Efficiency Engines

2010-10-25
2010-01-2199
Non-petroleum based liquid fuels are essential for reducing oil dependence and greenhouse gas generation. Increased substitution of alcohol fuel for petroleum based fuels could be achieved by 1) use in high efficiency spark ignition engines that are employed for heavy duty as well as light duty operation and 2) use of methanol as well as ethanol. Methanol is the liquid fuel that is most efficiently produced from thermo-chemical gasification of coal, natural gas, waste or biomass. Ethanol can also be produced by this process but at lower efficiency and higher cost. Coal derived methanol is in limited initial use as a transportation fuel in China. Methanol could potentially be produced from natural gas at an economically competitive fuel costs, and with essentially the same greenhouse gas impact as gasoline. Waste derived methanol could also be an affordable low carbon fuel.
Technical Paper

Alternative Tooling Technologies for Low Volume Stamping

1999-09-28
1999-01-3216
Low volume manufacturing has become increasingly important for the automotive industry. Globalization trends have led automakers and their suppliers to operate in developing regions where minimum efficient scales can not always be achieved. With proper maintenance, standard cast iron stamping tools can be used to produce millions of parts, but require large investments. Thus at high production volumes, the impact of the tooling investment on individual piece costs is minimized. However, at low volumes there is a substantial cost penalty. In light of the trends towards localized manufacturing and relatively low demands in some developing markets, low cost stamping tools are needed. Several alternate tooling technologies exist, each of which require significantly lower initial investments, but suffer from greatly reduced tool lives. However, the use of these technologies at intermediate to high volumes requires multiple tool sets thus eliminating their cost advantage.
Journal Article

Analysis of Ash in Low Mileage, Rapid Aged, and High Mileage Gasoline Exhaust Particle Filters

2017-03-28
2017-01-0930
To meet future particle mass and particle number standards, gasoline vehicles may require particle control, either by way of an exhaust gas filter and/or engine modifications. Soot levels for gasoline engines are much lower than diesel engines; however, non-combustible material (ash) will be collected that can potentially cause increased backpressure, reduced power, and lower fuel economy. The purpose of this work was to examine the ash loading of gasoline particle filters (GPFs) during rapid aging cycles and at real time low mileages, and compare the filter performances to both fresh and very high mileage filters. Current rapid aging cycles for gasoline exhaust systems are designed to degrade the three-way catalyst washcoat both hydrothermally and chemically to represent full useful life catalysts. The ash generated during rapid aging was low in quantity although similar in quality to real time ash. Filters were also examined after a low mileage break-in of approximately 3000 km.
Journal Article

Ash Accumulation and Impact on Sintered Metal Fiber Diesel Particulate Filters

2015-04-14
2015-01-1012
While metal fiber filters have successfully shown a high degree of particle retention functionality for various sizes of diesel engines with a low pressure drop and a relatively high filtration efficiency, little is known about the effects of lubricant-derived ash on the fiber filter systems. Sintered metal fiber filters (SMF-DPF), when used downstream from a diesel engine, effectively trap and oxidize diesel particulate matter via an electrically heated regeneration process where a specific voltage and current are applied to the sintered alloy fibers. In this manner the filter media essentially acts as a resistive heater to generate temperatures high enough to oxidize the carbonaceous particulate matter, which is typically in excess of 600°C.
Journal Article

Ash Effects on Diesel Particulate Filter Pressure Drop Sensitivity to Soot and Implications for Regeneration Frequency and DPF Control

2010-04-12
2010-01-0811
Ash, primarily derived from diesel engine lubricants, accumulates in diesel particulate filters directly affecting the filter's pressure drop sensitivity to soot accumulation, thus impacting regeneration frequency and fuel economy. After approximately 33,000 miles of equivalent on-road aging, ash comprises more than half of the material accumulated in a typical cordierite filter. Ash accumulation reduces the effective filtration area, resulting in higher local soot loads toward the front of the filter. At a typical ash cleaning interval of 150,000 miles, ash more than doubles the filter's pressure drop sensitivity to soot, in addition to raising the pressure drop level itself. In order to evaluate the effects of lubricant-derived ash on DPF pressure drop performance, a novel accelerated ash loading system was employed to generate the ash and load the DPFs under carefully-controlled exhaust conditions.
Technical Paper

Axiomatic Design of Automobile Suspension and Steering Systems: Proposal for a Novel Six-Bar Suspension

2004-03-08
2004-01-0811
The existing vehicle designs exhibit a high level of coupling. For instance the coupling in the suspension and steering systems manifests itself through the change in wheel alignment parameters (WAP) due to suspension travel. This change in the WAP causes directional instability and tire-wear. The approach of the industry to solve this problem has been twofold. The first approach has been optimization of suspension link lengths to reduce the change in WAP to zero. Since this is not possible with the existing architecture, the solution used is the optimization of the spring stiffness K to get a compromise solution for comfort (which requires significant suspension travel and hence a soft spring) and directional stability (which demands least possible change in wheel alignment parameters and hence a stiff spring).
Journal Article

Characteristics and Effects of Lubricant Additive Chemistry on Ash Properties Impacting Diesel Particulate Filter Service Life

2010-04-12
2010-01-1213
Ash accumulation in diesel particulate filters, mostly from essential lubricant additives, decreases the filter's soot storage capacity, adversely affects fuel economy, and negatively impacts the filter's service life. While the adverse effects of ash accumulation on DPF performance are well known, the underlying mechanisms controlling these effects are not. To address these issues, results of detailed measurements with specially formulated lubricants, correlating ash properties to individual lubricant additives and their effects on DPF pressure drop, are presented. Investigations using the specially-formulated lubricants showed ash consisting primarily of calcium sulfates to exhibit significantly increased flow resistance as opposed to ash primarily composed of zinc phosphates. Furthermore, ash accumulated along the filer walls was found to be packed approximately 25% denser than ash accumulated in the channel end-plugs.
Technical Paper

Comparative Analysis of Automotive Powertrain Choices for the Next 25 Years

2007-04-16
2007-01-1605
This paper assesses the potential improvement of automotive powertrain technologies 25 years into the future. The powertrain types assessed include naturally-aspirated gasoline engines, turbocharged gasoline engines, diesel engines, gasoline-electric hybrids, and various advanced transmissions. Advancements in aerodynamics, vehicle weight reduction and tire rolling friction are also taken into account. The objective of the comparison is the potential of anticipated improvements in these powertrain technologies for reducing petroleum consumption and greenhouse gas emissions at the same level of performance as current vehicles in the U.S.A. The fuel consumption and performance of future vehicles was estimated using a combination of scaling laws and detailed vehicle simulations. The results indicate that there is significant potential for reduction of fuel consumption for all the powertrains examined.
Journal Article

Conceptual Modeling of Complex Systems via Object Process Methodology

2009-04-20
2009-01-0524
Knowledge mapping is a first and mandatory step in creation of system architecture. This paper considers the conceptual modeling of automotive systems, and discusses the creation of a knowledge-based model with respect to the Object Process Methodology an approach used in designing intelligent systems by depicting them using object models and process models. With this knowledge, systems engineer should consider what a product is comprised of (its structure), how it operates (its dynamics), and how it interacts with the environment. As systems have become more complex, a prevalent problem in systems development has been the number of accruing errors. A clearly defined and consistent mapping of knowledge regarding structure, operation and interaction is necessary to construct an effective and useful system. An interactive, iterative and consistent method is needed to cope with this complex and circular problem.
Technical Paper

Detailed Calculation of Heating, Evaporation, and Reaction Processes of a Thin Liquid Layer of Hydrocarbon Fuel

2000-03-06
2000-01-0959
A one-dimensional model has been developed for the species and energy transfer over a thin (0.1-0.5 mm) layer of liquid fuel present on the wall of a spark-ignition engine. Time-varying boundary conditions during compression and flame passage were used to determine the rate of methanol vaporization and oxidation over a mid-speed, mid-load cycle, as a function of wall temperature. The heat of vaporization and the boiling point of the fuel were varied about a baseline to determine the effect of these characteristics, at a fixed operating point and lean conditions (ϕ = 0.9). The calculations show that the evaporation of fuels from layers on cold walls starts during flame passage, peaking a few milliseconds later, and continuing through the exhaust phase.
Technical Paper

Dramatic Emissions Reductions with a Direct Injection Diesel Engine Burning Supercritical Fuel/Water Mixtures

2001-09-24
2001-01-3526
Research conducted at the Supercritical (SC) facility of MIT's Energy Laboratory provided visual confirmation of a single phase, homogeneous water/fuel mixture near the critical temperature and pressure of water. Equal volumes of water and diesel fuel were observed to be completely miscible, and high temperature polymerization of fuel molecules was not found. This is believed to be the first observation of a solution of diesel fuel and water. This mixture was subsequently burned under atmospheric spray conditions with very low NOx, smoke, CO, and HC. The results suggested that in-cylinder combustion in a compression ignition engine was warranted. Tests were conducted in a single cylinder, air-cooled, naturally aspirated, 3.5 horsepower Yanmar diesel engine. The compressibility of this new fuel composition necessitated a modified injector to provide smooth operation.
Technical Paper

Draw Bead Penetration as a Control Element of Material Flow

1993-03-01
930517
Draw beads are widely utilized as a mechanism for providing proper restraining force to a sheet in a forming operation. In this paper, numerical simulations using the nonlinear finite element method are conducted to model the process of drawing a sheet through various draw bead configurations to study the mechanics of draw bead restraint. By examing the sensitivity of the draw bead restraining force due to the change of the draw bead penetration, the work shows that the penetration has the potential to be a very good element for varying and controlling restraining force during the process. A closed-loop feedback control of draw bead penetration using a proportional-integral controller is achieved by the combination of the original finite element simulation and a special element which links penetration to a pre-defined restraining force trajectory.
Technical Paper

Dual-Fuel Gasoline-Alcohol Engines for Heavy Duty Trucks: Lower Emissions, Flexible-Fuel Alternative to Diesel Engines

2018-04-03
2018-01-0888
Long-haul and other heavy-duty trucks, presently almost entirely powered by diesel fuel, face challenges meeting worldwide needs for greatly reducing nitrogen oxide (NOx) emissions. Dual-fuel gasoline-alcohol engines could potentially provide a means to cost-effectively meet this need at large scale in the relatively near term. They could also provide reductions in greenhouse gas emissions. These spark ignition (SI) flexible fuel engines can provide operation over a wide fuel range from mainly gasoline use to 100% alcohol use. The alcohol can be ethanol or methanol. Use of stoichiometric operation and a three-way catalytic converter can reduce NOx by around 90% relative to emissions from diesel engines with state of the art exhaust treatment.
Technical Paper

Economic Analysis of Hydro-Mechanical Sheet Metal Forming

1999-09-28
1999-01-3207
Recent industry trends have resulted in growing interest among automakers in low to medium volume manufacturing. The expansion of automobile production into developing economies and the desire to produce specialized vehicles for niche markets have pressed the automakers to find cost effective solutions for manufacturing at low volumes, particularly with regard to sheet metal forming. Conventional high volume stamping operations rely heavily on achieving minimum scale economies which occur at about 200,000 parts per year. These scale economies are mainly dictated by the efficient use of the standard, expensive cast iron dies. These dies can cost well over one million dollars depending on the part, and in return offer tool lives over 5 million strokes. Die investment can be reduced by changing the stamping process technology. Hydro-mechanical forming has been proposed as a promising low volume alternative to conventional stamping.
Technical Paper

Effect of Composition, Particle Size, and Heat Treatment on the Mechanical Properties of Al-4.5 wt.% Cu Based Alumina Particulate Reinforced Composites

1998-02-23
980700
The quest for higher efficiency and performance of automotive vehicles requires application of materials with high strength, stiffness and lower weight in their construction. Particulate-reinforced aluminum-matrix composites are cost-competitive materials, which can meet these requirements. MMCC, Inc. has been optimizing particulate-reinforced alloy systems and developing the Advanced Pressure Infiltration Casting (APIC™) process for the manufacture of components from these materials. This paper discusses the results of a recent study in which composites reinforced with 55 vol.% alumina were cast using two sizes of alumina particulate and eight different matrix alloys based on Al-4.5 wt.% Cu with varying amounts of silicon and magnesium. Optimum heat treatments for each alloy were determined utilizing microhardness studies. The tensile strength and fracture toughness were evaluated as a function of alloy chemistry, particulate size, and heat treatment.
X