Refine Your Search

Topic

Author

Search Results

Technical Paper

A CAD-Driven Flexible Forming System for Three-Dimensional Sheet Metal Parts

1993-03-01
930282
A novel system for the forming of three dimensional sheet metal parts is described that can form a variety of part shapes without the need for fixed tooling, and given only geometry (CAD) information about the desired part. The central elements of this system are a tooling concept based on a programmable discrete die surface and closed-loop shape control. The former give the process the degrees of freedom to change shape rapidly, and the latter is used to insure that the correct shape is formed with a minimum of forming trials. A 540 kN (60 ton) lab press has been constructed with a 0.3 m (12 in) square pair of discrete tools that can be rapidly re-shaped between forming trials. The shape control system uses measured part shapes to determine a shape error and to correct the tooling shape. This correction is based on a unique “Deformation Transfer Function” approach using a spatial frequency decomposition of the surface.
Technical Paper

A Comparative Study of Recurrent Neural Network Architectures for Battery Voltage Prediction

2021-09-21
2021-01-1252
Electrification is the well-accepted solution to address carbon emissions and modernize vehicle controls. Batteries play a critical in the journey of electrification and modernization with battery voltage prediction as the foundation for safe and efficient operation. Due to its strong dependency on prior information, battery voltage was estimated with recurrent neural network methods in the recent literatures exploring a variety of deep learning techniques to estimate battery behaviors. In these studies, standard recurrent neural networks, gated recurrent units, and long-short term memory are popular neural network architectures under review. However, in most cases, each neural network architecture is individually assessed and therefore the knowledge about comparative study among three neural network architecture is limited. In addition, many literatures only studied either the dynamic voltage response or the voltage relaxation.
Technical Paper

A New Design for Automotive Alternators

2000-11-01
2000-01-C084
This paper introduces a new design for alternator systems that provides dramatic increases in peak and average power output from a conventional Lundell alternator, along with substantial improvements in efficiency. Experimental results demonstrate these capability improvements. Additional performance and functionality improvements of particular value for high-voltage (e.g., 42 V) alternators are also demonstrated. Tight load-dump transient suppression can be achieved using this new design and the alternator system can be used to implement jump charging (the charging of the high-voltage system battery from a low-voltage source). Dual-output extensions of the technique (e.g., 42/14 V) are also introduced. The new technology preserves the simplicity and low cost of conventional alternator designs, and can be implemented within the existing manufacturing infrastructure.
Technical Paper

Air-Fuel Ratio Measurement Diagnostics During Cranking and Startup in a Port-Fuel-Injected Spark-Ignition Engine

2004-06-08
2004-01-1915
Cranking and startup fuel control has become increasingly important due to ever tightening emission requirements. Additionally, engine-off strategies during idle will require substantially more engine startup events with the associated need for very clean starts. Thus, knowledge of an engine's Air-Fuel Ratio (AFR) during its early cycles is necessary in order to optimize cranking and startup fueling. This paper examines and compares two methods of measuring an engine's AFR during engine startup (approximately the first second of operation); an in-cylinder technique using a Fast Flame Ionization Detector (FFID) and the conventional exhaust based Universal Exhaust Gas Oxygen (UEGO) sensor method. Engine starts using a Ford Zetec engine were performed at three different temperatures (0, 20 and 90 C) as well as different initial engine starting positions.
Journal Article

An Adaptive Copula-Based Approach for Model Bias Characterization

2015-04-14
2015-01-0455
A copula-based approach for model bias characterization was previously proposed [18] aiming at improving prediction accuracy compared to other model characterization approaches such as regression and Gaussian Process. This paper proposes an adaptive copula-based approach for model bias identification to enhance the available methodology. The main idea is to use cluster analysis to preprocess data, then apply the copula-based approach using information from each cluster. The final prediction accumulates predictions obtained from each cluster. Two case studies will be used to demonstrate the superiority of the adaptive copula-based approach over its predecessor.
Journal Article

An Assessment of the Rare Earth Element Content of Conventional and Electric Vehicles

2012-04-16
2012-01-1061
Rare earths are a group of elements whose availability has been of concern due to monopolistic supply conditions and environmentally unsustainable mining practices. To evaluate the risks of rare earths availability to automakers, a first step is to determine raw material content and value in vehicles. This task is challenging because rare earth elements are used in small quantities, in a large number of components, and by suppliers far upstream in the supply chain. For this work, data on rare earth content reported by vehicle parts suppliers was assessed to estimate the rare earth usage of a typical conventional gasoline engine midsize sedan and a full hybrid sedan. Parts were selected from a large set of reported parts to build a hypothetical typical mid-size sedan. Estimates of rare earth content for vehicles with alternative powertrain and battery technologies were made based on the available parts' data.
Technical Paper

An Overview of Hydrocarbon Emissions Mechanisms in Spark-Ignition Engines

1993-10-01
932708
This paper provides an overview of spark-ignition engine unburned hydrocarbon emissions mechanisms, and then uses this framework to relate measured engine-out hydrocarbon emission levels to the processes within the engine from which they result. Typically, spark-ignition engine-out HC levels are 1.5 to 2 percent of the gasoline fuel flow into the engine; about half this amount is unburned fuel and half is partially reacted fuel components. The different mechanisms by which hydrocarbons in the gasoline escape burning during the normal engine combustion process are described and approximately quantified. The in-cylinder oxidation of these HC during the expansion and exhaust processes, the fraction which exit the cylinder, and the fraction oxidized in the exhaust port and manifold are also estimated.
Technical Paper

Analysis of Fuel Behavior in the Spark-Ignition Engine Start-Up Process

1995-02-01
950678
An analysis method for characterizing fuel behavior during spark-ignition engine starting has been developed and applied to several sets of start-up data. The data sets were acquired from modern production vehicles during room temperature engine start-up. Two different engines, two control schemes, and two engine temperatures (cold and hot) were investigated. A cycle-by-cycle mass balance for the fuel was used to compare the amount of fuel injected with the amount burned or exhausted as unburned hydrocarbons. The difference was measured as “fuel unaccounted for”. The calculation for the amount of fuel burned used an energy release analysis of the cylinder pressure data. The results include an overview of starting behavior and a fuel accounting for each data set Overall, starting occurred quickly with combustion quality, manifold pressure, and engine speed beginning to stabilize by the seventh cycle, on average.
Technical Paper

Analyzing the Limitations of the Rider and Electric Motorcycle at the Pikes Peak International Hill Climb Race

2019-04-02
2019-01-1125
This paper describes a post-race analysis of team KOMMIT EVT’s electric motorcycle data collected during the 2016 Pikes Peak International Hill Climb (PPIHC). The motorcycle consumed approximately 4 kWh of battery energy with an average and maximum speed of 107 km/h and 149 km/h, respectively. It was the second fastest electric motorcycle with a finishing time of 11:10.480. Data was logged of the motorcycle’s speed, acceleration, motor speed, power, currents, voltages, temperatures, throttle position, GPS position, rider’s heart rate and the ambient environment (air temperature, pressure and humidity). The data was used to understand the following factors that may have prevented a faster time: physical fitness of the rider, thermal limits of the motor and controller, available battery energy and the sprocket ratio between the motor and rear wheel.
Technical Paper

Automotive Electrical System in the New Millennium

1999-11-15
1999-01-3747
The automotive industry is investigating the change of electrical system voltage in a vehicle from the present 14 volt (12V battery) to 42 volt (36V battery) to integrate new electrical and electronic features. These new features require more amperes, thicker wires, large power devices, and eventually higher cost. The existing 14V system is very difficult to sustain so much content because of constraints of performance, efficiency, cost, packaging space, and manufacture-ability. This paper discusses foreseeable needs moving to a higher voltage, and reasons of 42V selection. It explores benefits and drawbacks when the voltage is changed from 14V to 42V in the areas of wire harness, power electronics, smart switching, power supply, etc. Finally, two typical 42/14V dual voltage architectures are presented for a likely 42V transition scenario.
Technical Paper

Crash Safety of Lithium-Ion Batteries Towards Development of a Computational Model

2010-04-12
2010-01-1078
Battery packs for Hybrids, Plug-in Hybrids, and Electric Vehicles are assembled from a system of modules (sheets) with a tight sheet metal casing around them. Each module consists of an array of individual cells which vary in the composition of electrodes and separator from one manufacturer to another. In this paper a general procedure is outlined on the development of a constitutive and computational model of a cylindrical cell. Particular emphasis is placed on correct prediction of initiation and propagation of a tearing fracture of the steel can. The computational model correctly predicts rupture of the steel can which could release aggressive chemicals, fumes, or spread the ignited fire to the neighboring cells. The initiation site of skin fracture depends on many factors such as the ductility of the casing material, constitutive behavior of the system of electrodes, and type of loading.
Technical Paper

Crash Test Pulses for Advanced Batteries

2012-04-16
2012-01-0548
This paper reports a 2010 study undertaken to determine generic acceleration pulses for testing and evaluating advanced batteries for application in electric passenger vehicles. These were based on characterizing vehicle acceleration time histories from standard laboratory vehicle crash tests. Crash tested passenger vehicles in the United States vehicle fleet of the model years 2005-2009 were used. The crash test data were gathered from the following test modes and sources: 1 Frontal rigid flat barrier test at 35 mph (NHTSA NCAP) 2 Frontal 40% offset deformable barrier test at 40 mph (IIHS) 3 Side moving deformable barrier test at 38 mph (NHTSA side NCAP) 4 Side oblique pole test at 20 mph (US FMVSS 214/NHTSA side NCAP) 5 Rear 70% offset moving deformable barrier impact at 50 mph (US FMVSS 301). The accelerometers used were from locations in the vehicle where deformation is minor or non-existent, so that the acceleration represents the “rigid-body” motion of the vehicle.
Journal Article

Design Drivers of Energy-Efficient Transport Aircraft

2011-10-18
2011-01-2495
The fuel energy consumption of subsonic air transportation is examined. The focus is on identification and quantification of fundamental engineering design tradeoffs which drive the design of subsonic tube and wing transport aircraft. The sensitivities of energy efficiency to recent and forecast technology developments are also examined.
Technical Paper

Direct Hydrogen-Fueled Proton-Exchange-Membrane (PEM) Fuel Cell for Transportation, Part 2

1996-08-01
961712
A fuel cell (FC) powerplant is an electrochemical engine that converts fuel and an oxidant electrochemically into electric energy, water and other chemical byproducts. When hydrogen is used as the fuel, the only products of the electrochemical reactions are water and electric power. Other conventional and advanced powerplants for transportation, such as the internal combustion (IC) engine, the Diesel engine and others, are thermal combustion engines. The theoretical or thermodynamic efficiency of a fuel cell or electrochemical engine is much higher than the thermodynamic efficiency of a heat engine. The practical efficiency of a fuel cell is highest at partial load, whereas the practical efficiency of a heat engine is highest at maximum power. A survey is presented of the different fuel cell types and their characteristics. The proton-exchange-membrane (PEM) fuel cell is shown to be the best available fuel cell for transportation applications.
Technical Paper

Dual-Mode Vehicle, Terminal, and Network Alternatives for Automated Guideway Transportation

1971-02-01
710112
Terminal design has emerged as having critical importance in the planning of dual-mode transportation in cities because the very high line-haul capacity of automated guideways can lead to large space requirements at entry and exit points. In this paper the influence of vehicle size, the method of guidance and propulsion, and the network terminal layouts on the space requirements for the overall transportation systems are discussed. Forecasts are made of the manner in which dual-mode transportation will first be installed.
Technical Paper

Establishing Localized Fire Test Methods and Progressing Safety Standards for FCVs and Hydrogen Vehicles

2011-04-12
2011-01-0251
The SAE Fuel Cell Vehicle (FCV) Safety Working Group has been addressing FCV safety for over 11 years. In the past couple of years, significant attention has been directed toward a revision to the standard for vehicular hydrogen systems, SAE J2579(1). In addition to streamlining test methodologies for verification of Compressed Hydrogen Storage Systems (CHSSs) as discussed last year,(2) the working group has been considering the effect of vehicle fires, with the major focus on a small or localized fire that could damage the container in the CHSS and allow a burst before the Pressure Relief Device (PRD) can activate and safely vent the compressed hydrogen stored from the container.
Technical Paper

Evaluation of Air Bag Electronic Sensing System Collision Performance through Laboratory Simulation

2015-04-14
2015-01-1484
Since their inception, the design of airbag sensing systems has continued to evolve. The evolution of air bag sensing system design has been rapid. Electromechanical sensors used in earlier front air bag applications have been replaced by multi-point electronic sensors used to discriminate collision mechanics for potential air bag deployment in front, side and rollover accidents. In addition to multipoint electronic sensors, advanced air bag systems incorporate a variety of state sensors such as seat belt use status, seat track location, and occupant size classification that are taken into consideration by air bag system algorithms and occupant protection deployment strategies. Electronic sensing systems have allowed for the advent of event data recorders (EDRs), which over the past decade, have provided increasingly more information related to air bag deployment events in the field.
Journal Article

Identification of True Stress-Strain Curve of Thermoplastic Polymers under Biaxial Tension

2016-04-05
2016-01-0514
This article is concerned with identification of true stress-strain curve under biaxial tension of thermoplastic polymers. A new type of biaxial tension attachment was embedded first in a universal material test machine, which is able to transform unidirectional loading of the test machine to biaxial loading on the specimen with constant velocity. Cruciform specimen geometry was optimized via FE modeling. Three methods of calculating true stress in biaxial tension tests were compared, based on incompressibility assumption, linear elastic theory and inverse engineering method, respectively. The inverse engineering method is more appropriate for thermoplastic polymers since it considers the practical volume change of the material during biaxial tension deformation. The strategy of data processing was established to obtain biaxial tension true stress-strain curves of different thermoplastic polymers.
Technical Paper

Introduction of Functional Periodicity to Prevent Long-Term Failure Mechanism

2006-04-03
2006-01-1203
One of the goals of designing engineering systems is to maximize the system's reliability. A reliable system must satisfy its functional requirements without failure throughout its intended lifecycle. The typical means to achieve a desirable level of reliability is through preventive maintenance of a system; however, this involves cost. A more fundamental approach to the problem is to maximize the system's reliability by preventing failures from occurring. A key question is to find mechanisms (and the means to implement them into a system) that will prevent its system range from going out of the design range. Functional periodicity is a means to achieve this goal. Three examples are discussed to illustrate the concept. In the new electrical connector design, it is the geometric functional periodicity provided by the woven wire structure. In the case of integrated manufacturing systems, it is the periodicity in scheduling of the robot motion.
X