Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

1D Model for Correcting the Rate of Injection Signal Based on Geometry and Temperature Influence

2017-03-28
2017-01-0819
The fuel consumption and emissions of diesel engines is strongly influenced by the injection rate pattern, which influences the in-cylinder mixing and combustion process. Knowing the exact injection rate is mandatory for an optimal diesel combustion development. The short injection time of no more than some milliseconds prevents a direct flow rate measurement. However, the injection rate is deduced from the pressure change caused by injecting into a fuel reservoir or pipe. In an ideal case, the pressure increase in a fuel pipe correlates with the flow rate. Unfortunately, real measurement devices show measurement inaccuracies and errors, caused by non-ideal geometrical shapes as well as variable fuel temperature and fuel properties along the measurement pipe. To analyze the thermal effect onto the measurement results, an available rate measurement device is extended with a flexible heating system as well as multiple pressure and temperature sensors.
Technical Paper

50,000 Mile Vehicle Road Test of Three-Way and NOx Reduction Catalyst Systems

1978-02-01
780608
The performance of three way and NOx catalysts was evaluated on vehicles utilizing non-feedback fuel control and electronic feedback fuel control. The vehicles accumulated 80,450 km (50,000 miles) using fuels representing the extremes in hydrogen-carbon ratio available for commercial use. Feedback carburetion compared to non-feedback carburetion improved highway fuel economy by about 0.4 km/l (1 mpg) and reduced deterioration of NOx with mileage accumulation. NOx emissions were higher with the low H/C fuel in the three way catalyst system; feedback reduced the fuel effect on NOx in these cars by improving conversion efficiency with the low H/C fuel. Feedback had no measureable effect on HC and CO catalyst efficiency. Hydrocarbon emissions were lower with the low H/C fuel in all cars. Unleaded gasoline octane improver, MMT, at 0.015g Mn/l (0.06 g/gal) increased tailpipe hydrocarbon emissions by 0.05 g/km (0.08 g/mile).
Technical Paper

A CFD Validation Study for Automotive Aerodynamics

2000-03-06
2000-01-0129
A study was conducted using Ford's nine standard CFD calibration models as described in SAE paper 940323. The models are identical from the B-pillar forward but have different back end configurations. These models were created for the purpose of evaluating the effect of back end geometry variations on aerodynamic lift and drag. Detailed experimental data is available for each model in the form of surface pressure data, surface flow visualization, and wake flow field measurements in addition to aerodynamic lift and drag values. This data is extremely useful in analyzing the accuracy of the numerical simulations. The objective of this study was to determine the capability of a digital physics based commercial CFD code, PowerFLOW ® to accurately simulate the physics of the flow field around the car-like benchmark shapes.
Journal Article

A Comparative Assessment of Electric Propulsion Systems in the 2030 US Light-Duty Vehicle Fleet

2008-04-14
2008-01-0459
This paper quantifies the potential of electric propulsion systems to reduce petroleum use and greenhouse gas (GHG) emissions in the 2030 U.S. light-duty vehicle fleet. The propulsion systems under consideration include gasoline hybrid-electric vehicles (HEVs), plug-in hybrid vehicles (PHEVs), fuel-cell hybrid vehicles (FCVs), and battery-electric vehicles (BEVs). The performance and cost of key enabling technologies were extrapolated over a 25-30 year time horizon. These results were integrated with software simulations to model vehicle performance and tank-to-wheel energy consumption. Well-to-wheel energy and GHG emissions of future vehicle technologies were estimated by integrating the vehicle technology evaluation with assessments of different fuel pathways. The results show that, if vehicle size and performance remain constant at present-day levels, these electric propulsion systems can reduce or eliminate the transport sector's reliance on petroleum.
Technical Paper

A Comparative Study on Different Dual-Fuel Combustion Modes Fuelled with Gasoline and Diesel

2012-04-16
2012-01-0694
Comparisons have been made between dual-fuel (80% port-injection gasoline and 20% direct-injection diesel by mass) Highly Premixed Charge Combustion (HPCC) and blended-fuel (80% gasoline and 20% diesel) Low Temperature Combustion (LTC) modes on a 1-L single-cylinder test engine. In the HPCC mode, both early-injection (E-HPCC) and late-injection (L-HPCC) of diesel have been used. The comparisons have been conducted with a fixed fuel injection rate of 50 mg/cycle at 1500 rpm, and with the combustion phasing fixed (by adjusting the injection timing) so that the 50% heat release point (CA50) is at 8° ATDC. The rapid heat release process of LTC leads to the highest maximum pressure rise rate (MPRR). A two-peak heat release process is observed in L-HPCC, resulting in a lower MPRR. The heat release rate and MPRR values for the E-HPCC are comparable to the L-HPCC values. The EHPCC mode provides the lowest NOX emission. The soot emissions for all three modes are low.
Journal Article

A Comparison of Combustion and Emissions of Diesel Fuels and Oxygenated Fuels in a Modern DI Diesel Engine

2012-09-10
2012-01-1695
Two oxygenated fuels were evaluated on a single-cylinder diesel engine and compared to three hydrocarbon diesel fuels. The oxygenated fuels included canola biodiesel (canola methyl esters, CME) and CME blended with dibutyl succinate (DBS), both of which are or have the potential to be bio-derived. DBS was added to improve the cold flow properties, but also reduced the cetane number and net heating value of the resulting blend. A 60-40 blend of the two (60% vol CME and 40% vol DBS) provided desirable cold flow benefits while staying above the U.S. minimum cetane number requirement. Contrary to prior vehicle test results and numerous literature reports, single-cylinder engine testing of both CME and the 60-40 blend showed no statistically discernable change in NOx emissions relative to diesel fuel, but only when constant intake oxygen was maintained.
Technical Paper

A Comparison of the Effect of E85 vs. Gasoline on Exhaust System Surface Temperatures

2007-04-16
2007-01-1392
With concerns over increasing worldwide demand for gasoline and greenhouse gases, many automotive companies are increasing their product lineup of vehicles to include flex-fuel vehicles that are capable of operating on fuel blends ranging from 100% gasoline up to a blend of 15% gasoline/85% ethanol (E85). For the purpose of this paper, data was obtained that will enable an evaluation relating to the effect the use of E85 fuel has on exhaust system surface temperatures compared to that of regular unleaded gasoline while the vehicle undergoes a typical drive cycle. Three vehicles from three different automotive manufacturers were tested. The surface of the exhaust systems was instrumented with thermocouples at specific locations to monitor temperatures from the manifold to the catalytic converter outlet. The exhaust system surface temperatures were recorded during an operation cycle that included steady vehicle speed operation; cold start and idle and wide open throttle conditions.
Journal Article

A Component Test Methodology for Simulation of Full-Vehicle Side Impact Dummy Abdomen Responses for Door Trim Evaluation

2011-04-12
2011-01-1097
Described in this paper is a component test methodology to evaluate the door trim armrest performance in an Insurance Institute for Highway Safety (IIHS) side impact test and to predict the SID-IIs abdomen injury metrics (rib deflection, deflection rate and V*C). The test methodology consisted of a sub-assembly of two SID-IIs abdomen ribs with spine box, mounted on a linear bearing and allowed to translate in the direction of impact. The spine box with the assembly of two abdominal ribs was rigidly attached to the sliding test fixture, and is stationary at the start of the test. The door trim armrest was mounted on the impactor, which was prescribed the door velocity profile obtained from full-vehicle test. The location and orientation of the armrest relative to the dummy abdomen ribs was maintained the same as in the full-vehicle test.
Technical Paper

A Computational Investigation of the Effects of Swirl Ratio and Injection Pressure on Mixture Preparation and Wall Heat Transfer in a Light-Duty Diesel Engine

2013-04-08
2013-01-1105
In a recent study, quantitative measurements were presented of in-cylinder spatial distributions of mixture equivalence ratio in a single-cylinder light-duty optical diesel engine, operated with a non-reactive mixture at conditions similar to an early injection low-temperature combustion mode. In the experiments a planar laser-induced fluorescence (PLIF) methodology was used to obtain local mixture equivalence ratio values based on a diesel fuel surrogate (75% n-heptane, 25% iso-octane), with a small fraction of toluene as fluorescing tracer (0.5% by mass). Significant changes in the mixture's structure and composition at the walls were observed due to increased charge motion at high swirl and injection pressure levels. This suggested a non-negligible impact on wall heat transfer and, ultimately, on efficiency and engine-out emissions.
Technical Paper

A Diesel Lean Nox Trap Model for Control Strategy Verification

2004-03-08
2004-01-0526
Lean NOx traps are considered as a possible means to reduce diesel powertrain tail pipe NOx emissions to future stringent limits. Several publications have proposed models for lean NOx traps [1, 2, 3 and 4]. This paper focuses on a lean NOx trap model that can be used for the verification of control strategies before these strategies are implemented in target microprocessors. Strategy verification in a simulation environment is a crucial tool for reducing control strategy development and implementation time.
Technical Paper

A Driver Behavior Recognition Method Based on a Driver Model Framework

2000-03-06
2000-01-0349
A method for detecting drivers' intentions is essential to facilitate operating mode transitions between driver and driver assistance systems. We propose a driver behavior recognition method using Hidden Markov Models (HMMs) to characterize and detect driving maneuvers and place it in the framework of a cognitive model of human behavior. HMM-based steering behavior models for emergency and normal lane changes as well as for lane keeping were developed using a moving base driving simulator. Analysis of these models after training and recognition tests showed that driver behavior modeling and recognition of different types of lane changes is possible using HMMs.
Technical Paper

A Framework for Robust Driver Gaze Classification

2016-04-05
2016-01-1426
The challenge of developing a robust, real-time driver gaze classification system is that it has to handle difficult edge cases that arise in real-world driving conditions: extreme lighting variations, eyeglass reflections, sunglasses and other occlusions. We propose a single-camera end-toend framework for classifying driver gaze into a discrete set of regions. This framework includes data collection, semi-automated annotation, offline classifier training, and an online real-time image processing pipeline that classifies the gaze region of the driver. We evaluate an implementation of each component on various subsets of a large onroad dataset. The key insight of our work is that robust driver gaze classification in real-world conditions is best approached by leveraging the power of supervised learning to generalize over the edge cases present in large annotated on-road datasets.
Technical Paper

A Fuel Vapor Model (FVSMOD) for Evaporative Emissions System Design and Analysis

1998-10-19
982644
A fuel vapor system model (FVSMOD) has been developed to simulate vehicle evaporative emission control system behavior. The fuel system components incorporated into the model include the fuel tank and pump, filler cap, liquid supply and return lines, fuel rail, vent valves, vent line, carbon canister and purge line. The system is modeled as a vented system of liquid fuel and vapor in equilibrium, subject to a thermal environment characterized by underhood and underbody temperatures and heat transfer parameters assumed known or determined by calibration with experimental liquid temperature data. The vapor/liquid equilibrium is calculated by simple empirical equations which take into account the weathering of the fuel, while the canister is modeled as a 1-dimensional unsteady absorptive and diffusive bed. Both fuel and canister submodels have been described in previous publications. This paper presents the system equations along with validation against experimental data.
Technical Paper

A Graphical Workstation Based Part-Task Flight Simulator for Preliminary Rapid Evaluation of Advanced Displays

1992-10-01
921953
Advances in avionics and display technology are significantly changing the cockpit environment in current transport aircraft. The MIT Aeronautical Systems Lab (ASL) has developed a part-task flight simulator specifically to study the effects of these new technologies on flight crew situational awareness and performance. The simulator is based on a commercially-available graphics workstation, and can be rapidly reconfigured to meet the varying demands of experimental studies. The simulator has been successfully used to evaluate graphical microburst alerting displays, electronic instrument approach plates, terrain awareness and alerting displays, and ATC routing amendment delivery through digital datalinks.
Technical Paper

A LNT+SCR System for Treating the NOx Emissions from a Diesel Engine

2006-04-03
2006-01-0210
An aftertreatment system involving a LNT followed by a SCR catalyst is proposed for treating the NOx emissions from a diesel engine. NH3 (or urea) is injected between the LNT and the SCR. The SCR is used exclusively below 400°C due to its high NOx activity at low temperatures and due to its ability to store and release NH3 below 400°C, which helps to minimize NH3 and NOx slip. Above 400°C, where the NH3 storage capacity of the SCR falls to low levels, the LNT is used to store the NOx. A potassium-based LNT is utilized due to its high temperature NOx storage capability. Periodically, hydrocarbons are oxidized on the LNT under net lean conditions to promote the thermal release of the NOx. NH3 is injected simultaneously to reduce the released NOx over the SCR. The majority of the hydrocarbons are oxidized on the front portion of the LNT, resulting in the rapid release of stored NOx from that portion of the LNT.
Technical Paper

A Method for Vehicle Occupant Height Estimation

2017-03-28
2017-01-1440
Vehicle safety systems may use occupant physiological information, e.g., occupant heights and weights to further enhance occupant safety. Determining occupant physiological information in a vehicle, however, is a challenging problem due to variations in pose, lighting conditions and background complexity. In this paper, a novel occupant height estimation approach is presented. Depth information from a depth camera, e.g., Microsoft Kinect is used. In this 3D approach, first, human body and frontal face views (restricted by the Pitch and Roll values in the pose estimation) based on RGB and depth information are detected. Next, the eye location (2D coordinates) is detected from frontal facial views by Haar-cascade detectors. The eye-location co-ordinates are then transferred into vehicle co-ordinates, and seated occupant eye height is estimated according to similar triangles and fields of view of Kinect.
Technical Paper

A Method of Predicting Brake Specific Fuel Consumption Maps

1999-03-01
1999-01-0556
A method of predicting brake specific fuel consumption characteristics from limited specifications of engine design has been investigated. For spark ignition engines operating on homogeneous mixtures, indicated specific fuel consumption based on gross indicated power is related to compression ratio and spark timing relative to optimum values. The influence of burn rate is approximately accounted for by the differences in spark timings required to correctly phase combustion. Data from engines of contemporary design shows that indicated specific fuel consumption can be defined as a generic function of relative spark timing, mixture air/fuel ratio and exhaust gas recirculation rate. The additional information required to generate brake specific performance maps is cylinder volumetric efficiency, rubbing friction, auxiliary loads, and exhaust back pressure characteristics.
Technical Paper

A Model of Quench Layer Entrainment During Blowdown and Exhaust of the Cylinder of an Internal Combustion Engine

1975-02-01
750477
An aerodynamic model of the entrainment of the head wall quench layer during blowdown and exhaust of an internal combustion engine has been developed. The model may be used to calculate the time resolved concentration and mass flowrate of hydrocarbons (HC) in the exhaust, from a knowledge of engine geometry and operating conditions. It predicts that the area As from which HC are swept will be proportional to the cube root of the ratio of the quench layer thickness δq to the thickness of the viscous boundary layer δv. Since the mass of HC emitted is proportional to the product of the HC density ρHC, the area As and the thickness δq, the HC emissions will be proportional to the product ρHC δq4/3 and this is the most important factor determining the emissions.
Technical Paper

A Modeling Analysis of Fibrous Media for Gasoline Particulate Filters

2017-03-28
2017-01-0967
With an emerging need for gasoline particulate filters (GPFs) to lower particle emissions from gasoline direct injection (GDI) engines, studies are being conducted to optimize GPF designs in order to balance filtration efficiency, backpressure penalty, filter size, cost and other factors. Metal fiber filters could offer additional designs to the GPF portfolio, which is currently dominated by ceramic wall-flow filters. However, knowledge on their performance as GPFs is still limited. In this study, modeling on backpressure and filtration efficiency of fibrous media was carried out to determine the basic design criteria (filtration area, filter thickness and size) for different target efficiencies and backpressures at given gas flow conditions. Filter media with different fiber sizes (8 - 17 μm) and porosities (80% - 95%) were evaluated using modeling to determine the influence of fiber size and porosity.
Technical Paper

A Multi-Variable Regression Model for Ergonomic Lifting Analysis with Digital Humans

2008-06-17
2008-01-1909
The Snook tables (Liberty Mutual Tables) are a collection of data sets compiled from studies based on a psychophysical approach to material-handling tasks. These tables are used to determine safe loads for lifting, lowering, carrying pulling, and pushing. The tables take into account different population percentiles, gender, and frequency of activity. However, while using these tables to analyze a work place, Ergonomists often have to select from discrete data points closest to the actual work place parameters thereby reducing accuracy of results. To compound the problem further, multiple interrelated variables are involved, making it difficult to analyze parameters intuitively. For example, it can be difficult to answer questions such as, does reducing the lifting height lower the recommended lifting weight, if the lifting distance is increased? To resolve such issues, this paper presents a new methodology for implementing the Snook tables using multi variable regression.
X