Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

3D Vortex Simulation of Intake Flow in a Port-Cylinder with a Valve Seat and a Moving Piston

1996-05-01
961195
A Lagrangian random vortex-boundary element method has been developed for the simulation of unsteady incompressible flow inside three-dimensional domains with time-dependent boundaries, similar to IC engines. The solution method is entirely grid-free in the fluid domain and eliminates the difficult task of volumetric meshing of the complex engine geometry. Furthermore, due to the Lagrangian evaluation of the convective processes, numerical viscosity is virtually removed; thus permitting the direct simulation of flow at high Reynolds numbers. In this paper, a brief description of the numerical methodology is given, followed by an example of induction flow in an off-centered port-cylinder assembly with a harmonically driven piston and a valve seat situated directly below the port. The predicted flow is shown to resemble the flow visualization results of a laboratory experiment, despite the crude approximation used to represent the geometry.
Journal Article

A Batch Blending System for Continuous Production of Multi-Component Fuel Blends for Engine Laboratory Tests

2020-09-15
2020-01-2153
The increased rates of research on complex fuel blends in engine applications poses a need for more efficient and accurate fuel blending processes in engine laboratories. Making the fuel blending process automatic, effective, accurate and flexible saves time, storage space and cost without compromising the tests of future fuel alternatives. To meet these requirements, an automatic fuel blending system, following a sequential batch process, was designed and tested for engine laboratory application. The fuel blending system was evaluated in terms of functionality, safety, accuracy and repeatability. The functionality and safety was evaluated through a risk analysis. Whereas, the accuracy and repeatability of the system was investigated through blend preparation tests. The results show that the minimum fuel mass limitation of the system is 0.5 kg. This allows for blends with fuel ratios as low as 7 vol-% to be prepared by the system.
Journal Article

A Comparative Assessment of Electric Propulsion Systems in the 2030 US Light-Duty Vehicle Fleet

2008-04-14
2008-01-0459
This paper quantifies the potential of electric propulsion systems to reduce petroleum use and greenhouse gas (GHG) emissions in the 2030 U.S. light-duty vehicle fleet. The propulsion systems under consideration include gasoline hybrid-electric vehicles (HEVs), plug-in hybrid vehicles (PHEVs), fuel-cell hybrid vehicles (FCVs), and battery-electric vehicles (BEVs). The performance and cost of key enabling technologies were extrapolated over a 25-30 year time horizon. These results were integrated with software simulations to model vehicle performance and tank-to-wheel energy consumption. Well-to-wheel energy and GHG emissions of future vehicle technologies were estimated by integrating the vehicle technology evaluation with assessments of different fuel pathways. The results show that, if vehicle size and performance remain constant at present-day levels, these electric propulsion systems can reduce or eliminate the transport sector's reliance on petroleum.
Technical Paper

A Comparative Study on Different Dual-Fuel Combustion Modes Fuelled with Gasoline and Diesel

2012-04-16
2012-01-0694
Comparisons have been made between dual-fuel (80% port-injection gasoline and 20% direct-injection diesel by mass) Highly Premixed Charge Combustion (HPCC) and blended-fuel (80% gasoline and 20% diesel) Low Temperature Combustion (LTC) modes on a 1-L single-cylinder test engine. In the HPCC mode, both early-injection (E-HPCC) and late-injection (L-HPCC) of diesel have been used. The comparisons have been conducted with a fixed fuel injection rate of 50 mg/cycle at 1500 rpm, and with the combustion phasing fixed (by adjusting the injection timing) so that the 50% heat release point (CA50) is at 8° ATDC. The rapid heat release process of LTC leads to the highest maximum pressure rise rate (MPRR). A two-peak heat release process is observed in L-HPCC, resulting in a lower MPRR. The heat release rate and MPRR values for the E-HPCC are comparable to the L-HPCC values. The EHPCC mode provides the lowest NOX emission. The soot emissions for all three modes are low.
Technical Paper

A Comparison of On-Engine Surge Detection Algorithms using Knock Accelerometers

2017-10-08
2017-01-2420
On-engine surge detection could help in reducing the safety margin towards surge, thus allowing higher boost pressures and ultimately low-end torque. In this paper, experimental data from a truck turbocharger compressor mounted on the engine is investigated. A short period of compressor surge is provoked through a sudden, large drop in engine load. The compressor housing is equipped with knock accelerometers. Different signal treatments are evaluated for their suitability with respect to on-engine surge detection: the signal root mean square, the power spectral density in the surge frequency band, the recently proposed Hurst exponent, and a closely related concept optimized to detect changes in the underlying scaling behavior of the signal. For validation purposes, a judgement by the test cell operator by visual observation of the air filter vibrations and audible noises, as well as inlet temperature increase, are also used to diagnose surge.
Journal Article

A Dual Grid Curved Beam Finite Element Model of Piston Rings for Improved Contact Capabilities

2014-04-01
2014-01-1085
Piston rings are large contributors to friction losses in internal combustion engines. To achieve higher engine efficiency, low friction ring packs that can maintain good sealing performance must be designed. To support this effort, simulation tools have been developed to model the performance of piston rings during engine operation. However, the challenge of predicting oil consumption, blow by, and ring pack friction with sufficient accuracy remains. This is mostly due to the complexity of this system. Ring dynamics, deformation, interaction with liner and piston, gas and lubricant flow must all be studied together to make relevant predictions. In this paper, a new curved beam finite element model of piston rings is proposed. Ring structural deformation and contact with the liner are treated on two separate grids. A comparison with ring models in the literature and analytical solutions shows that it can provide accurate results efficiently.
Technical Paper

A Model For Estimating Oil Vaporization From The Cylinder Liner As A Contributing Mechanism to Engine Oil Consumption

1999-05-03
1999-01-1520
A model has been developed for estimating the oil vaporization rate from the cylinder liner of a reciprocating engine. The model uses input from an external cycle simulator and an external liner oil film thickness model. It allows for the change in oil composition and the change in oil film thickness due to vaporization. It also estimates how the passage of the compression and scraper rings combine with the vaporization to influence the steady-state composition of the oil layer in the upper ring pack. Computer model results are presented for a compression-ignition engine using a range of liner temperatures, several engine speeds, and two different oils. Vaporization is found to be highly dependent on liner temperature and steady-state oil composition. The steady-state oil composition near the top of the cylinder is found to be significantly different than the composition of the oil near the bottom of the cylinder.
Technical Paper

A Model for Flame Initiation and Early Development in SI Engine and its Application to Cycle-to-Cycle Variations

1994-10-01
942049
This paper uses a model which calculates the flame kernel formation and its early development in spark ignition engines to examine the causes of cycle-to-cycle combustion variations. The model takes into account the primary physical factors influencing flame development. The spark-generated flame kernel size and temperature required to initialize the computation are completely determined by the breakdown energy and the heat conduction from burned region to unburned region. In order to verify the model, the computation results are compared with high-speed Schlieren photography flame development data from an operating spark-ignition engine; they match remarkably well with each other at all test conditions. For the application of this model to the study of cycle-to-cycle variation of the early stage of combustion, additional input is required.
Technical Paper

A Model for Predicting Residual Gas Fraction in Spark-Ignition Engines

1993-03-01
931025
A model for calculating the residual gas fraction in spark ignition engines has been formulated. The model accounts explicitly for the contribution due to the back flow of exhaust gas to the cylinder during the valve overlap period. The model has been calibrated with in-cylinder hydrocarbon measurements at different values of intake pressure, engine speed, and valve overlap timings.
Technical Paper

A Model of Quench Layer Entrainment During Blowdown and Exhaust of the Cylinder of an Internal Combustion Engine

1975-02-01
750477
An aerodynamic model of the entrainment of the head wall quench layer during blowdown and exhaust of an internal combustion engine has been developed. The model may be used to calculate the time resolved concentration and mass flowrate of hydrocarbons (HC) in the exhaust, from a knowledge of engine geometry and operating conditions. It predicts that the area As from which HC are swept will be proportional to the cube root of the ratio of the quench layer thickness δq to the thickness of the viscous boundary layer δv. Since the mass of HC emitted is proportional to the product of the HC density ρHC, the area As and the thickness δq, the HC emissions will be proportional to the product ρHC δq4/3 and this is the most important factor determining the emissions.
Technical Paper

A Modeling Investigation into the Optimal Intake and Exhaust Valve Event Duration and Timing for a Homogenous Charge Compression Ignition Engine

2005-10-24
2005-01-3746
Homogenous Charge Compression Ignition (HCCI) engine operation has been demonstrated using both residual trapping and residual re-induction. A number of production valve train technologies can accomplish either of these HCCI modes of operation. Wide-scale testing of the many valve timing and duration options for an HCCI engine is both time and cost prohibitive, thus a modeling study was pursued to investigate optimal HCCI valve-train designs using the geometry of a conventional gasoline Port-Fuel-Injected (PFI) Spark-Ignition (SI) engine. A commercially available engine simulation program (WAVE), as well as chemical kinetic combustion modeling tools were used to predict the best approaches to achieving combustion across a wide variety of valve event durations and timings. The results of this study are consistent with experimental results reported in the literature: both residual trapping and residual re-induction are possible strategies for HCCI combustion.
Technical Paper

A New Approach to Ethanol Utilization: High Efficiency and Low NOx in an Engine Operating on Simulated Reformed Ethanol

2008-10-06
2008-01-2415
The use of hydrogen as a fuel supplement for lean-burn engines at higher compression ratios has been studied extensively in recent years, with good promise of performance and efficiency gains. With the advances in reformer technology, the use of a gaseous fuel stock, comprising of substantially higher fractions of hydrogen and other flammable reformate species, could provide additional improvements. This paper presents the performance and emission characteristics of a gas mixture of equal volumes of hydrogen, CO, and methane. It has recently been reported that this gas mixture can be produced by reforming of ethanol at comparatively low temperature, around 300C. Experiments were performed on a 1.8-liter passenger-car Nissan engine modified for single-cylinder operation. Special pistons were made so that compression ratios ranging from CR= 9.5 to 17 could be used. The lean limit was extended beyond twice stoichiometric (up to lambda=2.2).
Technical Paper

A Novel Strategy for Fast Catalyst Light-Off without the Use of an Air Pump

2007-01-23
2007-01-0044
A novel engine management strategy for achieving fast catalyst light-off without the use of an exhaust air pump in a port-fuel-injected, spark ignition engine was developed. A conventional 4-cylinder engine was operated with three cylinders running rich and the fourth one as an air pump to supply air to the exhaust manifold. Under steady-state cold coolant conditions, this strategy achieved near total oxidation of CO and HC with sufficiently retarded spark timing, resulting in a 400% increase in feedgas enthalpy flow and a 90% reduction in feedgas HC emissions compared to conventional operation. The strategy was also evaluated for crank starts. Using the existing engine hardware, implementing the strategy resulted in a reduction in catalyst light-off time from 28.0 seconds under conventional operation to 9.1 seconds.
Technical Paper

A Numerical Model for Piston Pin Lubrication in Internal Combustion Engines

2020-09-15
2020-01-2228
As the piston pin works under significant mechanical load, it is susceptible to wear, seizure, and structural failure, especially in heavy duty internal combustion engines. It has been found that the friction loss associated with the pin is comparable to that of the piston, and can be reduced when the interface geometry is properly modified. However, the mechanism that leads to such friction reduction, as well as the approaches towards further improvement, remain unknown. This work develops a piston pin lubrication model capable of simulating the interaction between the pin, the piston, and the connecting rod. The model integrates dynamics, solid contact, oil transport, and lubrication theory, and applies an efficient numerical scheme with second order accuracy to solve the highly stiff equations. As a first approach, the current model assumes every component to be rigid.
Technical Paper

A Numerical Model of Piston Secondary Motion and Piston Slap in Partially Flooded Elastohydrodynamic Skirt Lubrication

1994-03-01
940696
This paper presents a numerical model of the rotational and lateral dynamics of the piston (secondary motion) and piston slap in mixed lubrication. Piston dynamic behavior, frictional and impact forces are predicted as functions of crank angle. The model considers piston skirt surface waviness, roughness, skirt profile, thermal and mechanical deformations. The model considers partially-flooded skirt and calculates the pressure distributions and friction in the piston skirt region for both hydrodynamic and boundary lubrication. Model predictions are compared with measurements of piston position using gap sensors in a single-cylinder engine and the comparison between theory and measurement shows remarkable agreement.
Technical Paper

A Numerical and Experimental Study of Twin-land Oil Control Ring Friction in Internal Combustion Engines Part 2

2012-04-16
2012-01-1321
A twin-land oil control ring (TLOCR) model is used to evaluate TLOCR friction and the results are compared to the experiment measurement in a single cylinder floating liner engine under motoring condition. The model is based on a correlation between the hydrodynamic pressure and film thickness, which is generated using a deterministic model. The well-known three-regime lubrication is predicted with the model for ring with different ring tensions under various engine running conditions. A good match is found for the model and experiment results.
Technical Paper

A One-Line Correlation for Predicting Oil Vaporization from Liner for IC Engines

2018-04-03
2018-01-0162
The increasingly stringent regulations for fuel economy and emissions require better optimization and control of oil consumption. One of the primary mechanisms of oil consumption is vaporization from the liner; we consider this as the “minimum oil consumption (MOC).” This paper presents a physical-mathematical cycle model for predicting the MOC. The numerical simulations suggest that the MOC is markedly sensitive to oil volatility, liner temperature, engine load and speed but less sensitive to oil film thickness. A one-line correlation is proposed for quick MOC estimations. It is shown to have <15% error compared to the cycle MOC computation. In the “dry region” (between top ring and OCR at the TDC), oil is depleted due to high heat and continual exposure to the combustion chamber.
Technical Paper

A Performance Model for the Texaco Controlled Combustion, Stratified Charge Engine

1976-02-01
760116
A model has been developed to predict the performance of the Texaco Controlled Combustion, Stratified Charge Engine starting from engine geometry, fuel characteristics and the operating conditions. This performance model divides the engine cycle into the following phases: Intake, Compression, Rapid Combustion, Mixing-Dominated Expansion, Heat-Transfer Dominated Expansion and Exhaust. During the rapid combustion phase, the rate of heat release is assumed to be controlled by the rate of fuel injection and the air-to-fuel ratio. The burning rate in the mixing controlled stage appears to be dominated by the rate of entrainment of the surrounding gas by the plume of burning products and this rate is assumed to be controlled by the turbulent eddy entrainment velocity. A plume geometry model has been developed to obtain the surface area of the plume for entrainment during the mixing dominated phase.
Technical Paper

A Piston Ring-Pack Film Thickness and Friction Model for Multigrade Oils and Rough Surfaces

1996-10-01
962032
A complete one-dimensional mixed lubrication model has been developed to predict oil film thickness and friction of the piston ring-pack. An average flow model and a roughness contact model are used to consider the effects of surface roughness on both hydrodynamic and boundary lubrication. Effects of shear-thinning and liner temperature on lubricant viscosity are included. An inlet condition is applied by considering the unsteady wetting location at the leading edge of the ring. A ‘film non-separation’ exit condition is proposed to replace Reynolds exit condition when the oil squeezing becomes dominant. Three lubrication modes are considered in the model, namely, pure hydrodynamic, mixed, and pure boundary lubrication. All of these considerations are crucial for studying the oil transport, asperity contact, and friction especially in the top dead center (TDC) region where the oil control ring cannot reach.
Technical Paper

A Steady-State Based Investigation of Automotive Turbocharger Compressor Noise

2018-06-13
2018-01-1528
The challenging problem of noise generation and propagation in automotive turbocharging systems is of real interest from both scientific and practical points of view. Robust and fast steady-state fluid flow calculations, complemented by acoustic analogies can represent valuable tools to be used for a quick assessment of the problem during e.g. design phase, and a starting point for more in-depth future unsteady calculations. Thus, as a part of the initial phase of a long-term project, a steady-state Reynolds Averaged Navier-Stokes (RANS) flow analysis is carried out for a specific automotive turbocharger compressor geometry. Acoustic data are extracted by means of aeroacoustics models available within the framework of the STAR-CCM+ solver (i.e. Curle and Proudman acoustic analogies, respectively).
X