Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

A Comparative Assessment of Electric Propulsion Systems in the 2030 US Light-Duty Vehicle Fleet

2008-04-14
2008-01-0459
This paper quantifies the potential of electric propulsion systems to reduce petroleum use and greenhouse gas (GHG) emissions in the 2030 U.S. light-duty vehicle fleet. The propulsion systems under consideration include gasoline hybrid-electric vehicles (HEVs), plug-in hybrid vehicles (PHEVs), fuel-cell hybrid vehicles (FCVs), and battery-electric vehicles (BEVs). The performance and cost of key enabling technologies were extrapolated over a 25-30 year time horizon. These results were integrated with software simulations to model vehicle performance and tank-to-wheel energy consumption. Well-to-wheel energy and GHG emissions of future vehicle technologies were estimated by integrating the vehicle technology evaluation with assessments of different fuel pathways. The results show that, if vehicle size and performance remain constant at present-day levels, these electric propulsion systems can reduce or eliminate the transport sector's reliance on petroleum.
Technical Paper

A Comparative Life Cycle Assessment of Magnesium Front End Autoparts: A Revision to 2010-01-0275

2012-12-31
2012-01-2325
The Magnesium Front End Research and Development (MFERD) project under the sponsorship of Canada, China, and USA aims to develop key technologies and a knowledge base for increased use of magnesium in automobiles. The primary goal of this life cycle assessment (LCA) study is to compare the energy and potential environmental impacts of advanced magnesium based front end parts of a North American-built 2007 GM-Cadillac CTS using the current steel structure as a baseline. An aluminium front end is also considered as an alternate light structure scenario. A “cradle-to-grave” LCA is conducted by including primary material production, semi-fabrication production, autoparts manufacturing and assembly, transportation, use phase, and end-of-life processing of autoparts. This LCA study was done in compliance with international standards ISO 14040:2006 [1] and ISO 14044:2006 [2].
Technical Paper

A Framework for Robust Driver Gaze Classification

2016-04-05
2016-01-1426
The challenge of developing a robust, real-time driver gaze classification system is that it has to handle difficult edge cases that arise in real-world driving conditions: extreme lighting variations, eyeglass reflections, sunglasses and other occlusions. We propose a single-camera end-toend framework for classifying driver gaze into a discrete set of regions. This framework includes data collection, semi-automated annotation, offline classifier training, and an online real-time image processing pipeline that classifies the gaze region of the driver. We evaluate an implementation of each component on various subsets of a large onroad dataset. The key insight of our work is that robust driver gaze classification in real-world conditions is best approached by leveraging the power of supervised learning to generalize over the edge cases present in large annotated on-road datasets.
Technical Paper

A Graphical Workstation Based Part-Task Flight Simulator for Preliminary Rapid Evaluation of Advanced Displays

1992-10-01
921953
Advances in avionics and display technology are significantly changing the cockpit environment in current transport aircraft. The MIT Aeronautical Systems Lab (ASL) has developed a part-task flight simulator specifically to study the effects of these new technologies on flight crew situational awareness and performance. The simulator is based on a commercially-available graphics workstation, and can be rapidly reconfigured to meet the varying demands of experimental studies. The simulator has been successfully used to evaluate graphical microburst alerting displays, electronic instrument approach plates, terrain awareness and alerting displays, and ATC routing amendment delivery through digital datalinks.
Technical Paper

A Novel Capability for Crush Testing Crash Energy Management Structures at Intermediate Rates

2002-06-03
2002-01-1954
The crush performance of lightweight composite automotive structures varies significantly between static and dynamic test conditions. This paper discusses the development of a new dynamic testing facility that can be used to characterize crash performance at high loads and constant speed. Previous research results from the Energy Management Working Group (EMWG) of the Automotive Composites Consortium (ACC) showed that the static crush resistance of composite tubes can be significantly greater than dynamic crush results at speeds greater than 2 m/s. The new testing facility will provide the unique capability to crush structures at high loads in the intermediate velocity range. A novel machine control system was designed and projections of the machine performance indicate its compliance with the desired test tolerances. The test machine will be part of a national user facility at the Oak Ridge National Laboratory (ORNL) and will be available for use in the summer of 2002.
Technical Paper

A Numerical Model of Piston Secondary Motion and Piston Slap in Partially Flooded Elastohydrodynamic Skirt Lubrication

1994-03-01
940696
This paper presents a numerical model of the rotational and lateral dynamics of the piston (secondary motion) and piston slap in mixed lubrication. Piston dynamic behavior, frictional and impact forces are predicted as functions of crank angle. The model considers piston skirt surface waviness, roughness, skirt profile, thermal and mechanical deformations. The model considers partially-flooded skirt and calculates the pressure distributions and friction in the piston skirt region for both hydrodynamic and boundary lubrication. Model predictions are compared with measurements of piston position using gap sensors in a single-cylinder engine and the comparison between theory and measurement shows remarkable agreement.
Technical Paper

A Numerical and Experimental Study of Twin-land Oil Control Ring Friction in Internal Combustion Engines Part 2

2012-04-16
2012-01-1321
A twin-land oil control ring (TLOCR) model is used to evaluate TLOCR friction and the results are compared to the experiment measurement in a single cylinder floating liner engine under motoring condition. The model is based on a correlation between the hydrodynamic pressure and film thickness, which is generated using a deterministic model. The well-known three-regime lubrication is predicted with the model for ring with different ring tensions under various engine running conditions. A good match is found for the model and experiment results.
Technical Paper

A Performance Model for the Texaco Controlled Combustion, Stratified Charge Engine

1976-02-01
760116
A model has been developed to predict the performance of the Texaco Controlled Combustion, Stratified Charge Engine starting from engine geometry, fuel characteristics and the operating conditions. This performance model divides the engine cycle into the following phases: Intake, Compression, Rapid Combustion, Mixing-Dominated Expansion, Heat-Transfer Dominated Expansion and Exhaust. During the rapid combustion phase, the rate of heat release is assumed to be controlled by the rate of fuel injection and the air-to-fuel ratio. The burning rate in the mixing controlled stage appears to be dominated by the rate of entrainment of the surrounding gas by the plume of burning products and this rate is assumed to be controlled by the turbulent eddy entrainment velocity. A plume geometry model has been developed to obtain the surface area of the plume for entrainment during the mixing dominated phase.
Technical Paper

A Species-Based Multi-Component Volatility Model for Gasoline

1994-10-01
941877
A fuel volatility model based on the major species present in the fuel has been formulated. The model accurately predicts the ASTM distillation curves and Reid Vapor Pressure for hydrocarbon fuels. The model may be used to assess the fuel effects on the extent of evaporation and the vapor composition in the mixture preparation process.
Technical Paper

A Study of Cycle-to-Cycle Variations in SI Engines Using a Modified Quasi-Dimensional Model

1996-05-01
961187
This paper describes the use of a modified quasi-dimensional spark-ignition engine simulation code to predict the extent of cycle-to-cycle variations in combustion. The modifications primarily relate to the combustion model and include the following: 1. A flame kernel model was developed and implemented to avoid choosing the initial flame size and temperature arbitrarily. 2. Instead of the usual assumption of the flame being spherical, ellipsoidal flame shapes are permitted in the model when the gas velocity in the vicinity of the spark plug during kernel development is high. Changes in flame shape influence the flame front area and the interaction of the enflamed volume with the combustion chamber walls. 3. The flame center shifts due to convection by the gas flow in the cylinder. This influences the flame front area through the interaction between the enflamed volume and the combustion chamber walls. 4. Turbulence intensity is not uniform in cylinder, and varies cycle-to-cycle.
Technical Paper

A Thermal Conductivity Approach for Measuring Hydrogen in Engine Exhaust

2004-10-25
2004-01-2908
Thermal conductivity detection has long been used in gas chromatography to detect hydrogen and other diatomic gases in a gas sample. Thermal conductivity instruments that are not coupled to gas chromatographs are useful for detecting hydrogen in binary gas mixtures, but suffer from significant cross-interference from other gas species that are separated when the detector is used with a gas chromatograph. This study reports a method for using a commercially-available thermal conductivity instrument to detect and quantify hydrogen in a diesel exhaust stream. The instrument time response of approximately 40 seconds is sufficient for steady-state applications. Cross-interference from relevant gas species are quantified and discussed. Measurement uncertainty associated with the corrections for the various species is estimated and practical implications for use of the instrument and method are discussed.
Technical Paper

Advanced Finite-Volume Numerics and Source Term Assumptions for Kernel and G-Equation Modelling of Propane/Air Flames

2022-03-29
2022-01-0406
G-Equation models represent propagating flame fronts with an implicit two-dimensional surface representation (level-set). Level-set methods are fast, as transport source terms for the implicit surface can be solved with finite-volume operators on the finite-volume domain, without having to build the actual surface. However, they include approximations whose practical effects are not properly understood. In this study, we improved the numerics of the FRESCO CFD code’s G-Equation solver and developed a new method to simulate kernel growth using signed distance functions and the analytical sphere-mesh overlap. We analyzed their role for simulating propane/air flames, using three well-established constant-volume configurations: a one-dimensional, freely propagating laminar flame; a disc-shaped, constant-volume swirl combustor; and torch-jet flame development through an orifice from a two-chamber device.
Technical Paper

Alternative Tooling Technologies for Low Volume Stamping

1999-09-28
1999-01-3216
Low volume manufacturing has become increasingly important for the automotive industry. Globalization trends have led automakers and their suppliers to operate in developing regions where minimum efficient scales can not always be achieved. With proper maintenance, standard cast iron stamping tools can be used to produce millions of parts, but require large investments. Thus at high production volumes, the impact of the tooling investment on individual piece costs is minimized. However, at low volumes there is a substantial cost penalty. In light of the trends towards localized manufacturing and relatively low demands in some developing markets, low cost stamping tools are needed. Several alternate tooling technologies exist, each of which require significantly lower initial investments, but suffer from greatly reduced tool lives. However, the use of these technologies at intermediate to high volumes requires multiple tool sets thus eliminating their cost advantage.
Journal Article

An Assessment of the Rare Earth Element Content of Conventional and Electric Vehicles

2012-04-16
2012-01-1061
Rare earths are a group of elements whose availability has been of concern due to monopolistic supply conditions and environmentally unsustainable mining practices. To evaluate the risks of rare earths availability to automakers, a first step is to determine raw material content and value in vehicles. This task is challenging because rare earth elements are used in small quantities, in a large number of components, and by suppliers far upstream in the supply chain. For this work, data on rare earth content reported by vehicle parts suppliers was assessed to estimate the rare earth usage of a typical conventional gasoline engine midsize sedan and a full hybrid sedan. Parts were selected from a large set of reported parts to build a hypothetical typical mid-size sedan. Estimates of rare earth content for vehicles with alternative powertrain and battery technologies were made based on the available parts' data.
Technical Paper

Analysis of Fuel Behavior in the Spark-Ignition Engine Start-Up Process

1995-02-01
950678
An analysis method for characterizing fuel behavior during spark-ignition engine starting has been developed and applied to several sets of start-up data. The data sets were acquired from modern production vehicles during room temperature engine start-up. Two different engines, two control schemes, and two engine temperatures (cold and hot) were investigated. A cycle-by-cycle mass balance for the fuel was used to compare the amount of fuel injected with the amount burned or exhausted as unburned hydrocarbons. The difference was measured as “fuel unaccounted for”. The calculation for the amount of fuel burned used an energy release analysis of the cylinder pressure data. The results include an overview of starting behavior and a fuel accounting for each data set Overall, starting occurred quickly with combustion quality, manifold pressure, and engine speed beginning to stabilize by the seventh cycle, on average.
Technical Paper

Analysis of Semivolatile Organic Compounds in Diesel Exhaust Using a Novel Sorption and Extraction Method

1999-10-25
1999-01-3534
As interest has grown in diesel emissions and diesel engine aftertreatment, so has the importance of analyzing all components of the exhaust. One of the more costly and difficult measurements to make is the collection and analysis of semivolatile organic compounds (SOCs) in the exhaust. These compounds include alkane and alkenes from C12-C24, and the 2-5 ring polycyclic aromatic hydrocarbons (PAH). These compounds can be present in both the particulate (i.e. on the filter) and gaseous phase, and cannot be collected with bag samples. Typically, a sorbent is used downstream of the particulate collection filters to collect these compounds. Sorbent phases include polyurethane foam (PUF), Tenax™, XAD-type resins, and activated carbon. The SOCs are removed from the sorbent either by solvent extraction (PUF and XAD) or thermal desorption (Tenax™ and activated carbon). Each of these methods have advantages and disadvantages.
Journal Article

Analysis of Thermal and Chemical Effects on Negative Valve Overlap Period Energy Recovery for Low-Temperature Gasoline Combustion

2015-09-06
2015-24-2451
A central challenge for efficient auto-ignition controlled low-temperature gasoline combustion (LTGC) engines has been achieving the combustion phasing needed to reach stable performance over a wide operating regime. The negative valve overlap (NVO) strategy has been explored as a way to improve combustion stability through a combination of charge heating and altered reactivity via a recompression stroke with a pilot fuel injection. The study objective was to analyze the thermal and chemical effects on NVO-period energy recovery. The analysis leveraged experimental gas sampling results obtained from a single-cylinder LTGC engine along with cylinder pressure measurements and custom data reduction methods used to estimate period thermodynamic properties. The engine was fueled by either iso-octane or ethanol, and operated under sweeps of NVO-period oxygen concentration, injection timing, and fueling rate.
Technical Paper

Anthropometric and Blood Flow Characteristics Leading to EVA Hand Injury

2009-07-12
2009-01-2471
The aim of this study was to explore if fingernail delamination injury following EMU glove use may be caused by compression-induced blood flow occlusion in the finger. During compression tests, finger blood flow decreased more than 60%, however this occurred more rapidly for finger pad compression (4 N) than for fingertips (10 N). A pressure bulb compression test resulted in 50% and 45% decreased blood flow at 100 mmHg and 200 mmHg, respectively. These results indicate that the finger pad pressure required to articulate stiff gloves is more likely to contribute to injury than the fingertip pressure associated with tight fitting gloves.
Technical Paper

Application of Model Fuels to Engine Simulation

2007-07-23
2007-01-1843
To address the growing need for detailed chemistry in engine simulations, new software tools and validated data sets are being developed under an industry-funded consortium involving members from the automotive and fuels industry. The results described here include systematic comparison and validation of detailed chemistry models using a wide range of fundamental experimental data, and the development of software tools that support the use of detailed mechanisms in engineering simulations. Such tools include the automated reduction of reaction mechanisms for targeted simulation conditions. Selected results are presented and discussed.
Technical Paper

Application of a Lean Cellular Design Decomposition to Automotive Component Manufacturing System Design

1999-05-10
1999-01-1620
A design framework based on the principles of lean manufacturing and axiomatic design was used as a guideline for designing an automotive component manufacturing system. A brief overview of this design decomposition is given to review its structure and usefulness. Examples are examined to demonstrate how this design framework was applied to the design of a gear manufacturing system. These examples demonstrate the impact that low-level design decisions can have on high-level system objectives and the need for a systems-thinking approach in manufacturing system design. Results are presented to show the estimated performance improvements resulting from the new system design.
X