Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

A New Approach to Ethanol Utilization: High Efficiency and Low NOx in an Engine Operating on Simulated Reformed Ethanol

2008-10-06
2008-01-2415
The use of hydrogen as a fuel supplement for lean-burn engines at higher compression ratios has been studied extensively in recent years, with good promise of performance and efficiency gains. With the advances in reformer technology, the use of a gaseous fuel stock, comprising of substantially higher fractions of hydrogen and other flammable reformate species, could provide additional improvements. This paper presents the performance and emission characteristics of a gas mixture of equal volumes of hydrogen, CO, and methane. It has recently been reported that this gas mixture can be produced by reforming of ethanol at comparatively low temperature, around 300C. Experiments were performed on a 1.8-liter passenger-car Nissan engine modified for single-cylinder operation. Special pistons were made so that compression ratios ranging from CR= 9.5 to 17 could be used. The lean limit was extended beyond twice stoichiometric (up to lambda=2.2).
Journal Article

High Efficiency, Low Feedgas NOx, and Improved Cold Start Enabled by Low-Temperature Ethanol Reforming

2010-04-12
2010-01-0621
Two major barriers to wider use of ethanol as an engine fuel are ethanol's low heating value per volume relative to gasoline and higher hydrocarbon emissions at startup. Ethanol provides about one-third lower fuel economy than gasoline on a volumetric basis if the two fuels are utilized with equal efficiency, making ethanol less attractive to consumers. In addition, it is difficult to meet emissions standards such as SULEV when using E85 or hydrous ethanol, because ethanol's low volatility and high heat of vaporization compared to gasoline result in incomplete combustion when the engine is cold. A catalyst consisting of a copper-plated nickel sponge has recently been developed that enables ethanol to be reformed at around 300°C to a mixture of hydrogen (H₂), carbon monoxide (CO), and methane (CH₄). This low reforming temperature enables heat to be supplied from the engine exhaust.
X