Refine Your Search

Topic

Author

Search Results

Technical Paper

Advanced Rapid Combustion Concept Using Autoignition Assisted Flame for High Compression Ratio SI Engines

2023-09-29
2023-32-0119
To achieve higher thermal efficiency for spark- ignition (SI) engines, advanced rapid combustion technology under high compression ratio is needed. The results of single-cylinder preliminary engine tests using E.U. commercial fuel at 96 RON show that the higher the compression ratio, the faster the combustion speed. Additional engine test and computations using S5R five-component surrogate gasoline with reliable chemistry under various temperature and pressure conditions implied that the autoignition assisted flame played significant role under higher compression ratio conditions, i.e., high temperature and pressure conditions, where apparent increases in laminar flame speeds compared to conventional combustion.
Technical Paper

Aerodynamic Pitching Stability of Sedan-Type Vehicles Influenced by Pillar-Shape Configurations

2013-04-08
2013-01-1258
The present study investigated the aerodynamic pitching stability of sedan-type vehicles under the influence of A- and C-pillar geometrical configurations. The numerical method used for the investigation is based on the Large Eddy Simulation (LES) method. Whilst, the Arbitrary Lagrangian-Eulerian (ALE) method was employed to realize the prescribed pitching oscillation of vehicles during dynamic pitching and fluid flow coupled simulations. The trailing vortices that shed from the A-pillar and C-pillar edges produced the opposite tendencies on how they affect the aerodynamic pitching stability of vehicles. In particular, the vortex shed from the A-pillar edge tended to enhance the pitching oscillation of vehicle, while the vortex shed from the C-pillar edge tended to suppress it. Hence, the vehicle with rounded A-pillar and angular C-pillar exhibited a higher aerodynamic damping than the vehicle with the opposite A- and C-pillars configurations.
Technical Paper

An Approach for Improving Correlation of Solid Finite Element Models

2005-05-16
2005-01-2370
The quest to simulate noise problems has led to the building of larger and more detailed finite element models in order to perform vibration solutions to higher frequencies. This leads to the building of solid finite element models of complex geometries, such as castings, which might previously have contained less detail or even been built with shell elements. Unfortunately, detailed geometric representations used to build models do not always agree with as built parts and lead to discrepancies between analysis results and test data. This paper presents an approach that reduces the time and cost necessary to identify these differences.
Technical Paper

An Insight Into Effect of Split Injection on Mixture Formation and Combustion of DI Gasoline Engines

2004-06-08
2004-01-1949
In the previous study of the authors, it was found that some benefits for the mixture preparation of DI gasoline engines can be offered by splitting the fuel injection, such as the phenomenon of high density liquid phase fuel piling up at the leading edge of the spray can be circumvented. In a further analysis, the vapor quantity in the “stable operating” range (equivalence ratio of vapor ϕv in a range of 0.7≤ϕv≤1.3) was significantly increased by the split injection compared to the single injection. In this work, the mechanism of the effect of the split injection on the mixture formation process was studied by combining the laser-sheet imaging, LIF-PIV and the LAS (Laser Absorption Scattering) technique. As a result, it is found that the spray-induced ambient air motion can help the formation of the more combustible mixture of the split injection whereas it played a minus role of diluting the spray by the single injection.
Technical Paper

Analysis of Heat Transfer Phenomena on High Response Heat Insulation Coatings by Instantaneous Heat Flux Measurement and Boundary Layer Visualization

2015-09-01
2015-01-1996
Coating the heat insulation materials on the combustion chamber walls is one of the solutions to reduce the cooling loss of internal combustion engines. In order to examine the coatings, the evaluation of the heat transfer coefficient and the analysis of the heat transfer phenomena on the heat insulated walls are important. Firstly, the highly-responsive wall temperature sensor is developed, and the instantaneous wall heat flux is measured to evaluate the heat transfer coefficient on the heat insulated walls. The results show that the Nusselt number on the heat insulated walls is less influenced by the Reynolds number variation than that on the metal walls. Secondly, the high speed µ-PIV is employed to analyze the various turbulent flow characteristics. The results show that the turbulent dissipation on the heat insulated walls is smaller than that on the metal walls.
Technical Paper

Analysis of High Frequency Gear Whine Noise by Using an Inverse Boundary Element Method

2005-05-16
2005-01-2304
Some of the frequencies of transmission gear whine noise reach up to several kHz. High-frequency gear whine noise is mostly transmitted by air (airborne); therefore, it is critical to reduce transmission radiation noise. This paper presents how to solve the problem of high-frequency noise in the range of 2.0 - 4.1kHz by experiment using Inverse Boundary Element Method (IBEM) and by computer simulation using Boundary Element Method (BEM).
Technical Paper

Characteristics of Flat-Wall Impinging Spray Flame and Its Heat Transfer under Small Diesel Engine-Like Condition

2017-11-05
2017-32-0032
Heat loss is more critical for the thermal efficiency improvement in small size diesel engines than large-size diesel engines. More than half of total heat energy in the internal-combustion engine is lost by cooling through the cylinder walls to the atmosphere and the exhaust gas. Therefore, the new combustion concept is needed to reduce losses in the cylinder wall. In a Direct Injection (DI) diesel engine, the spray behavior, including spray-wall impingement has an important role in the combustion development to reduce heat loss. The aim of this study is to understand the mechanism of the heat transfer from the spray and flame to the impinging wall. Experiments were performed in a constant volume vessel (CVV) at high pressures and high temperatures. Fuel was injected using a single-hole injector with a 0.133 mm diameter nozzle. Under these conditions, spray evaporates, then burns near the wall. Spray/flame behavior was investigated with a high-speed video camera.
Technical Paper

Characteristics of Nozzle Internal Flow and Near-Field Spray of Multi-Hole Injectors for Diesel Engines

2015-09-01
2015-01-1920
The combustion process, emission formation and the resulting engine performance in a diesel engine are well known to be governed mainly by spray behaviors and the consequent mixture formation quality. One of the most important factors that affect the spray development is the nozzle configuration. Originally, single-hole diesel injector is usually applied in fundamental research to provide insights into the spray characteristics. However, the spray emerging from a realistic multi-hole injector approaches the practical engine operation situation better. Meanwhile, previous research has shown that the reduced nozzle hole diameter is effective for preparing more uniform mixture. In the current paper, a study about the effects of nozzle configuration and hole diameter on the internal flow and spray properties was conducted in conjunction with a series of experimental and computational methods.
Technical Paper

Characterization of Mixture Formation Processes in D.I. Gasoline Sprays by the Laser Absorption Scattering (LAS) Technique - Effect of Injection Conditions

2003-05-19
2003-01-1811
Mixture formation processes play a vital role on the performance of a D.I. Gasoline engine. Quantitative measurement of liquid and vapor phase concentration distribution in a D.I. gasoline spray is very important in understanding the mixture formation processes. In this paper, an unique laser absorption scattering (LAS) technique was employed to investigate the mixture formation processes of a fuel spray injected by a D.I. gasoline injector into a high pressure and temperature constant volume vessel. P-xylene, which is quite suitable for the application of the LAS technique, was selected as the test fuel. The temporal variations of the concentration distribution of both the liquid and vapor phases in the spray were quantitatively clarified. Then the effects of injection pressure and quantity on the concentration distributions of both the liquid and vapor phases in the spray were analyzed.
Technical Paper

Computational Study of the Wake Structure of a Simplified Ground-vehicle Shape with Base Slant

1989-02-01
890597
Three-dimensional flows around a vehicle-like bluff body (Ahmed's body) in ground proximity were computed by directly integrating the governing unsteady, incompressible Navier-Stokes equations. A well-established finite-difference procedure was used. The basic equations were formulated in a generalized coordinate system. A third-order upwind scheme was applied to discretize the equations, and the numerical solutions were acquired without any explicit turbulence models. Computations were performed at a high Reynolds number, Re=106 (based on the body length). In order to investigate the influence of the base slant angle, computations were performed for three base slant angles, i.e., 12.5 °, 25 °and 30 °. Extensive flow visualizations, using state-of-the-art computer graphics, were carried out. The present numerical results were found to be in broad agreement with the experiments of Ahmed.
Journal Article

Detailed Diesel Combustion and Soot Formation Analysis with Improved Wall Model Using Large Eddy Simulation

2015-11-17
2015-32-0715
A mixed time-scale subgrid large eddy simulation was used to simulate mixture formation, combustion and soot formation under the influence of turbulence during diesel engine combustion. To account for the effects of engine wall heat transfer on combustion, the KIVA code's standard wall model was replaced to accommodate more realistic boundary conditions. This were carried out by implementing the non-isothermal wall model of Angelberger et al. with modifications and incorporating the log law from Pope's method to account for the wall surface roughness. Soot and NOx emissions predicted with the new model are compared to experimental data acquired under various EGR conditions.
Technical Paper

Developed Technologies of the New Rotary Engine (RENESIS)

2004-03-08
2004-01-1790
The newly developed rotary engine has achieved major progress in high performance, improved fuel economy and clean exhaust gas by innovative action. The engine of the next generation is named RENESIS, which stands for “The RE (Rotary Engine)'s GENESIS” or the rotary engine for the new millennium. The peripheral exhaust port of the previous rotary engine is replaced by a side exhaust port system in the RENESIS. This allows for an increase in the intake port area, thus producing higher power. Exhaust opening timing is retarded to improve thermal efficiency. The side exhaust port also allows reducing the internal EGR, stabilizing the combustion at idling. The improved thermal efficiency and the stabilized idle combustion result in higher fuel economy. In addition, the side exhaust port allows a reduction of the HC mass, realizing reduced exhaust gas emission.
Technical Paper

Development of Dynamic Models for an HCCI Engine with Exhaust Gas Rebreathing System

2015-09-01
2015-01-1803
In this paper, a simplified prediction model for aiming to design an engine control system of Homogeneous Charge Compression Ignition (HCCI) engine has been developed. Developed HCCI engine model is for rebreathing concept and employs the discretized cycle concept to realize fast calculation speed. The ignition timings are predicted by Livengood-Wu integration combined with a function of ignition delay and the combustion durations are predicted from supplied fuel mass quantity. Maximum pressure and its phase are compared to experiments. In addition, for designing an HCCI engine, the models to predict appropriate operation conditions are considered.
Technical Paper

Development of Non-equilibrium Plasma and Combustion Integrated Model for Reaction Analysis

2019-12-19
2019-01-2349
Control of self-ignition timing in a HCCI engine is still a major technical issue. Recently, the application of a non-equilibrium plasma using repetitively discharge has been proposed as the promising technology. However, non-equilibrium plasma reaction in higher hydrocarbon fuel mixture is very complicated. Hence, there have been few calculation reports considering a series of reactions from non-equilibrium plasma production to high temperature oxidation process. In this study, 0-dimensional numerical simulation model was developed in which both reactions of plasma chemistry and high temperature oxidation combustion was taken into account simultaneously. In addition, an ODEs solver has been applied for the reduction of calculation time in the simulation. By comparing calculation results with experiment such as self-ignition timing, the validity of the developed numerical model has been evaluated.
Technical Paper

Development of a Low Pumping Loss Rotary Engine with a New Port Mechanism

1989-08-01
891677
The thermal efficiency of a three-rotor rotary engine (RE) was improved by a reduction in the pumping losses. These pumping losses were reduced by using a new port mechanism. The port mechanism utilized was an indirect recirculation type of late intake port closing. It was equipped with a recirculation chamber outside of the housings. This chamber interconnected the recirculation ports within each housing. This port mechanism yielded three main benefits 1. A Considerable reduction in the pumping losses. 2. A uniformly distributed air-fuel mixture in each housing. 3. A limited amount of residual gas in the housing. This residual gas was under specific pulsations by the recirculation chamber thus preventing deterioration in combustion under light loads. The above phenomena were clarified by experiments and simulations. The possibility of a reduction in exhaust emissions was also investigated.
Technical Paper

Development of film heat transfer model based on multiphase flow numerical analysis

2023-09-29
2023-32-0012
Automobiles will have to be applied strict regulations such as Euro7 against PM, HC, CO. The generation of these components are related to fuel deposition to the wall surface of the combustion chamber. Therefore, the fuel injection model of engine combustion CFD requires accurate prediction about the deposition and vaporization of fuel on the combustion chamber. In this study, multiphase flow numerical analysis that simulates fuel behavior on the wall surface was conducted first. Then, two model formulae about the contact area and the heat flux of a liquid film was constructed based on the result of multiphase flow numerical analysis method. Finally, the new film heat transfer model was constructed from these model formulae. In addition, it was confirmed that new heat transfer model can predict the liquid film temperature obtained by multiphase flow numerical analysis method accurately.
Technical Paper

Developments of the Reduced Chemical Reaction Scheme for Multi-Component Gasoline Fuel

2015-09-01
2015-01-1808
The reduced chemical reaction scheme which can take the effect of major fuel components on auto ignition timing into account has been developed. This reaction scheme was based on the reduced reaction mechanism for the primary reference fuels (PRF) proposed by Tsurushima [1] with 33 species and 38 reactions. Some pre-exponential factors were modified by using Particle Swarm Optimization to match the ignition delay time versus reciprocal temperature which was calculated by the detailed scheme with 2,301 species and 11,116 elementary chemical reactions. The result using the present reaction scheme shows good agreements with that using the detailed scheme for the effects of EGR, fuel components, and radical species on the ignition timing under homogeneous charge compression ignition combustion (HCCI) conditions.
Technical Paper

Effect of Cooling of Burned Gas by Vertical Vortex on NOx Reduction in Small DI Diesel Engines

2004-03-08
2004-01-0125
A new nitrogen oxide (NOx) reduction concept is suggested. A strong vertical vortex generated within the combustion bowl can mix hot burned gas into the cold excess air at the center of the combustion-bowl. This makes the burned gas cool rapidly. Therefore, it is possible to reduce NOx, which would be produced if the burned gas remained hot. In this paper the effect was verified with a 3D-CFD analysis of spray, air, combustion gas, and thermal efficiency as well as experiments on a 4-cylinder 2.0-liter direct injection diesel engine. The results confirmed that the vertical vortex was able to be strengthened with the change of spray characteristics and the combustion bowl shapes. This strengthened vertical vortex was able to reduce NOx by approximately 20% without making smoke and thermal-efficiency worse. Above results proved the effectiveness of this method.
Technical Paper

Evaluation of Aerodynamic Noise Generated in Production Vehicle Using Experiment and Numerical Simulation

2003-03-03
2003-01-1314
Aerodynamic noise generated in production vehicle has been evaluated using experiment and numerical simulation. Finite difference method (FDM) and finite element method (FEM) are applied to analyze the flow field, and Lighthill's analogy is employed to conduct acoustic analysis. The flow fields around front-pillar obtained by numerical simulations agree with those by experiment for two cases with different front-pillar shape. Moreover, the distribution of acoustic source predicted by FEM is consistent with that obtained by experiment. Present study ascertained the feasibility and applicability of FEM with SGS model towards prediction of aerodynamic noise generated in production vehicle.
Technical Paper

Evaluation of Wind Noise Sources Using Experimental and Computational Methods

2006-04-03
2006-01-0343
Experiment and CFD have been performed to clarify the distribution of wind noise sources and its generation mechanism for a production vehicle. Three noise source identification techniques were applied to measure the wind noise sources from the outside and inside of vehicle. The relation between these noise sources and the interior noise was investigated by modifying the specification of underbody and front-pillar. In addition, CFD was preformed to predict the noise sources and clarify its generation mechanism. The noise sources obtained by simulation show good agreement with experiment in the region of side window and underbody.
X