Refine Your Search

Search Results

Viewing 1 to 7 of 7
Technical Paper

Analysis of Intelligent Suspension Systems for Commercial Vehicles

1993-11-01
933008
Economical and technical aspects justify intelligent suspension systems in commercial vehicles. The tasks of suspensions of vehicles are contradictionary and the prevailing problems cannot be readily solved with conventional suspension systems in a satisfying manner. However, advantages are acquired by the use of adaptive suspension systems. Varying the properties and characteristics of suspension systems in respect to the different loads transported by a commercial vehicle, to vehicle speeds and to dynamic maneuvers, nearly present as good results as closed loop controlled adaptive suspension systems do. For economical reasons fully active suspension systems are only installed in commercial vehicles performing special tasks and services. Partially active suspension systems reduce power consumption and demonstrate satisfactory efficiency.
Technical Paper

Driving Performance of a Commercial Vehicle With Adaptive Suspensions

1993-11-01
931970
The settings of adaptive suspension elements may be switched from a comfortable “soft” characteristic to a safe and “firm” characteristic. Thus the possibility is given to not only improve the ride comfort, but the dynamic driving behavior as well, since no compromise must be made between these two criteria when tuning the suspensions. Such systems seem to be very promising for commercial vehicles, as - because of their changing loading conditions - it is very difficult to design an optimal suspension system using conventional springs and dampers. This paper describes the influence of shock absorbers and air springs with variable characteristics on the ride comfort and the dynamic behavior of a 15-t-truck by investigations done with a simulation system. A series production vehicle without adaptive suspension elements serves as basis. At first the results of measurements and simulations are compared and show a very good concurrence.
Technical Paper

Meta Design: Next Level of Acoustic Insulation in Automotive Industry

2024-06-12
2024-01-2934
Meta material has been known for many years and the physics are well known since decades. But the challenge has always been to put the know how into (mass) production. This was the reason why no meta material has found its way into the automotive industry so far. But now things have changed: meta material became Meta Design and is going into serial production in 2024. Meta Design is a tunable spring mass system with foam acting as the spring and heavy layer as the mass. Meta Design is characterized by cavities in the foam and concentrated masses of the heavy layer as functionalized mass pins. By tuning the size of the cavities and the weight of the mass pins the acoustic performance can be adjusted to the requirements of each individual car line. After preliminary simulations, flat samples were tested in the lab. The next step was launched: the production and testing of a handmade prototype part of a firewall insulation for a Mercedes-Benz A-Class.
Technical Paper

Results and Economical Aspects of Simulation Systems Evaluating the Braking and Steering Performance of Commercial Vehicles

1994-11-01
942300
The simulation of the driving performance of motor vehicles offers the possibility of analyzing the behavior of new commercial vehicles or new systems to be integrated into the vehicle, already before the stage of the first prototypes. Thus, simulation technology may contribute to shorten the time and costs needed for the development of new vehicles and new vehicle systems. As an example, this contribution describes the simulation of a commercial vehicle with adaptive suspension elements. The simulations were used to coarse-tune the suspension elements before installation and fine-tuning them in a prototype vehicle, and to define and optimize the control strategies of electronically controlled suspension systems. A comparison between the costs of the simulation and estimated costs of corresponding field tests substantiates the economical benefits of the simulation.
Technical Paper

Temperature Compensation with Thermovariable Rate Springs in Automatic Transmissions

1991-02-01
910805
The shifting comfort of automatic transmissions of diesel engines at low temperatures can be substantially improved by using springs with temperature dependent rates in the control valves. These springs utilize the shape memory effect of Ni-Ti alloys. They provide a simple and economic way to control both shifting pressure and shifting time. The Mercedes- Benz automatic transmission uses two different springs with thermovariable rate (TVR) in the shifting pressure system to adapt the pressure in the switching elements to the lower torque of cold diesel engines. One spring is used in the shifting pressure control valve and one in the accumulator system.
Technical Paper

The Mercedes-Benz 5-Speed Automatic Transmission Targets and Comparison of Concepts

1990-09-01
901759
Since the introduction of the 4-speed automatic transmissions W4A040 in 1979 and W4A020 in 1981, more than 50% of Mercedes-Benz cars have been equipped with automatic transmissions. These transmissions have undergone continuous development since their introduction. Due to engine/transmission management, the kick-down shift points are electronically influenced, the shift comfort is improved partially by ignition timing manipulation. During the warm-up phase the shift points are raised via output signals from the electronic engine system to improve exhaust gas emissions. In this paper considerations are explained which resulted in supplementing the proven four-speed transmission with a five-speed transmission.
Technical Paper

The Raisable Roll-Over Bar of the New Mercedes-Benz Roadster

1990-10-01
901124
The new SL from Mercedes-Benz was conceived as a pure-bred roadster, i.e. without a fixed roll-over bar which would mar the looks of this open sports car and moreover emphasize the added risk of injury in the event of a roll-over accident. At the same time, the aim was to further enhance occupant safety in the event of such a roll-over. These aims led to the designing of a completely new kind of passive protection system which comes into operation automatically if a roll-over is imminent. Between the rear seats and the soft-top recess, a roll-over bar was therefore integrated; this is mounted on a pivot system and does not affect the apearance of the car when lowered. A sensor system, which is also new, registers driving situations which could result in a roll-over. As a consequence of this, the roll-over bar is raised via a spring/damper mechanism and locked into position.
X