Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Catalytic Oxidation Model Development of the Volatile Reactor Assembly Unit of the International Space Station Water Processor

1995-07-01
951630
The destruction of organic contaminants in waste water for closed systems, such as that of the International Space Station, is crucial due to the need for recycling the waste water. A cocurrent upflow bubble column using oxygen as the gas phase oxidant and packed with catalyst particles consisting of a noble metal on an alumina substrate is being developed for this process. This paper addresses the development of a plug-flow model that will predict the performance of this three phase reactor system in destroying a multicomponent mixture of organic contaminants in water. Mass balances on a series of contaminants and oxygen in both the liquid and gas phases are used to develop this model. These mass balances incorporate the gas-to-liquid and liquid-to-particle mass transfer coefficients, the catalyst effectiveness factor, and intrinsic reaction rate.
Technical Paper

Nanoparticle-enhanced Heat Transfer Fluids for Spacecraft Thermal Control Systems

2006-07-17
2006-01-2264
The addition of metal nanoparticles to standard coolant fluids dramatically increases the thermal conductivity of the liquid. The properties of the prepared nanofluids will allow for lighter, smaller, and higher efficiency spacecraft thermal control systems to be developed. Nanofluids with spherical or rod-shaped metal nanoparticles were investigated. At a volume concentration of 0.5%, the room temperature thermal conductivity of a 2 nm spherical gold nanoparticle-water solution was increased by more than 10% over water alone. Silver nanorods increased the thermal conductivity of ethylene glycol by 53% and water by 26%.
Technical Paper

The Performance of a Spark-Ignited Stratified-Charge Two Stroke Engine Operating on a Kerosine Based Aviation Fuel

1997-09-08
972737
This study examines the feasibility of broadening the fuel capabilities of a direct-injected two-stroke engine with stratified combustion. A three cylinder, direct-injected two-stroke engine was modified to operate on JP-5, a kerosene-based jet fuel that is heavier, more viscous, and less volatile than gasoline. Demonstration of engine operation with such a fuel after appropriate design modifications would significantly enhance the utilization of this engine in a variety of applications. Results have indicated that the performance characteristics of this engine with jet fuel are similar to that of gasoline with respect to torque and power output at low speeds and loads, but the engine's performance is hampered at the higher speeds and loads by the occurrence of knock.
X