Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

A Computational Investigation of Hydrotreated Vegetable Oil Sprays Using RANS and a Modified Version of the RNG k - ε Model in OpenFOAM

2010-04-12
2010-01-0739
Hydrotreated vegetable oil (HVO) is a high-cetane number alternative fuel with the potential of drastic emissions reductions in high-pressure diesel engines. In this study the behavior of HVO sprays is investigated computationally and compared with conventional diesel fuel sprays. The simulations are performed with a modified version of the C++ open source code OpenFOAM using Reynolds-averaged conservation equations for mass, species, momentum and energy. The turbulence has been modeled with a modified version of the RNG k-ε model. In particular, the turbulence interaction between the droplets and the gas has been accounted for by introducing appropriate source terms in the turbulence model equations. The spray simulations reflect the setup of the constant-volume combustion cell from which the experimental data were obtained.
Technical Paper

A Computer Simulation of the Turbocharged Diesel Engine as an Enhancement of the Vehicle Engine Cooling System Simulation

1997-05-19
971804
A computer simulation of the turbocharged direct- injection diesel engine was developed to enhance the capabilities of the Vehicle Engine Cooling System Simulation (VECSS) developed at Michigan Technological University. The engine model was extensively validated against Detroit Diesel Corporation's (DDC) Series 60 engine data. In addition to the new engine model a charge-air-cooler model was developed and incorporated into the VECSS. A Freightliner truck with a Detroit Diesel's Series 60 engine, Behr McCord radiator, AlliedSignal/Garrett Automotive charge air cooler, Kysor DST variable speed fan clutch and other cooling system components was used for the study. The data were collected using the Detroit Diesel Electronic Controls (DDEC)-Electronic Control Module (ECM) and Hewlett Packard data acquisition system. The enhanced model's results were compared to the steady state TTD (top tank differential) data.
Journal Article

A Fuel Surrogate Validation Approach Using a JP-8 Fueled Optically Accessible Compression Ignition Engine

2015-04-14
2015-01-0906
An experimental fuel surrogate validation approach is proposed for a compression ignition application, and applied to validate a Jet-A POSF 4658 fuel surrogate. The approach examines the agreement of both physical and chemical properties of surrogate and target fuels during validation within a real compression-ignition engine environment during four sequential but distinct combustion phases. In-cylinder Mie Scattering measurements are applied to evaporating sprays to compare the behavior of the surrogate, its target fuel, and for reference, n-heptane. Early mixture formation and low temperature reaction behavior were investigated using 2-D broadband chemiluminescence imaging, while high temperature ignition and combustion chemistry were studied using OH chemiluminescence imaging. The optical measurements were combined with cylinder pressure-based combustion analysis, including ignition delay and premixed burn duration, to validate the global behavior of the surrogate.
Technical Paper

A New Ignition Delay Formulation Applied to Predict Misfiring During Cold Starting of Diesel Engines

2000-03-06
2000-01-1184
A new formulation is developed for the ignition delay (ID) in diesel engines to account for the effect of piston motion on the global autoignition reaction rates. A differentiation is made between the IDe measured in engines and IDv, measured in constant volume vessels. In addition, a method is presented to determine the coefficients of the IDe correlation from actual engine experimental data. The new formulation for IDe is applied to predict the misfiring cycles during the cold starting of diesel engines at different low ambient temperatures. The predictions are compared with experimental results obtained on a multi-cylinder heavy-duty diesel engine.
Technical Paper

A Numerical Investigation on Scalability and Grid Convergence of Internal Combustion Engine Simulations

2013-04-08
2013-01-1095
Traditional Lagrangian spray modeling approaches for internal combustion engines are highly grid-dependent due to insufficient resolution in the near nozzle region. This is primarily because of inherent restrictions of volume fraction with the Lagrangian assumption together with high computational costs associated with small grid sizes. A state-of-the-art grid-convergent spray modeling approach was recently developed and implemented by Senecal et al., (ASME-ICEF2012-92043) in the CONVERGE software. The key features of the methodology include Adaptive Mesh Refinement (AMR), advanced liquid-gas momentum coupling, and improved distribution of the liquid phase, which enables use of cell sizes smaller than the nozzle diameter. This modeling approach was rigorously validated against non-evaporating, evaporating, and reacting data from the literature.
Technical Paper

A Photographic Study of the Combustion of Low Cetane Fuels in a Diesel Engine Aided with Spark Assist

1986-03-01
860066
An experimental investigation of the ignition and combustion characteristics of two low cetane fuels in a spark assisted Diesel engine is described. A three cylinder Diesel engine was modified for single cylinder operation and fitted with a spark plug located in the periphery of the spray plume. Optical observations of ignition and combustion were obtained with high speed photography. Optical access was provided by a quartz piston crown and extended head arrangement. The low cetane fuels, a light end, low viscosity fuel and a heavy end, high viscosity fuel which were blended to bracket No. 2 Diesel fuel on the distillation curve, demonstrated extended operation in the modified Diesel engine. Qualitative and quantitative experimental observations of ignition delay, pressure rise, heat release, spray penetration and geometery were compared and evaluated against theoretical predictions.
Technical Paper

A Review of Diesel Particulate Control Technology and Emissions Effects - 1992 Horning Memorial Award Lecture

1994-03-01
940233
Studies have been conducted at Michigan Technological University (MTU) for over twenty years on methods for characterizing and controlling particulate emissions from heavy-duty diesel engines and the resulting effects on regulated and unregulated emissions. During that time, control technologies have developed in response to more stringent EPA standards for diesel emissions. This paper is a review of: 1) modern emission control technologies, 2) emissions sampling and chemical, physical and biological characterization methods and 3) summary results from recent studies conducted at MTU on heavy-duty diesel engines with a trap and an oxidation catalytic converter (OCC) operated on three different fuels. Control technology developments discussed are particulate traps, catalysts, advances in engine design, the application of exhaust gas recirculation (EGR), and modifications of fuel formulations.
Technical Paper

A Simulation Study of a Computer Controlled Cooling System for a Diesel Powered Truck

1984-11-01
841711
A set of control functions have been investigated for a computer controlled diesel cooling system, using the vehicle engine cooling system code. Various engine operating conditions such as the engine load, engine speed, and ambient temperature are considered as the controlling variables in the control loops. The truck simulated in the study was an International Harvester COF-9670 cab over chassis heavy-duty vehicle equipped with a standard cab heater, a Cummins NTC-350 diesel engine with a McCord radiator and standard cooling system components and after-cooler. The vehicle also had a Kysor fan-clutch and shutter system. Comparison simulation tests between the conventional cooling system and the computer controlled cooling system using the Vehicle-Engine-Cooling Computer System model under different ambient and route conditions show that the computer controlled cooling system would offer the following benefits: 1.
Technical Paper

A Statistical Approach to Determining the Effects of Speed, Load, Oil and Coolant Temperature on Diesel Engine Specific Fuel Consumption

1978-02-01
780971
Experimental Brake Specific Fuel Consumption (BSFC) data are presented for two engines as a function of engine speed, load, outlet coolant temperature and inlet oil temperature. The engines used in the study were the Cummins VT-903 (turbocharged) and the Caterpillar 3208, both being direct-injection and four-cycle. The data were taken for the Cat 3208 engine using a fractional factorial statistical method which reduced the total test matrix from 256 to 64 data points. The experimental data are used in the development of BSFC regression equations as a function of load, speed, outlet coolant temperature and inlet oil temperatures. A mathematical parameter for expressing quantitatively the change of BSFC per 10°F change in coolant and oil temperature is presented. It was found that an increase in the coolant and/or oil temperatures had the effect of reducing BSFC in both engines.
Technical Paper

A Study of the Character and Deposition Rates of Sulfur Species in the EGR Cooling System of a Heavy-Duty Diesel Engine

1999-10-25
1999-01-3566
Various measurement techniques were employed to quantify sulfuric acid deposition levels and concentration of sulfuric acid in the condensate from the recirculated exhaust gas heat exchanger of a 1995 Cummins M11 heavy-duty diesel engine. Methods employed included a modified version of the sulfur species sampling system developed by Kreso et al. (1)*, rinsing the heat exchanger, and experiments employing a condensate collection device (CCD). The modified sampling system was applied to the inlet and outlet of the heat exchanger in order to quantify the changes in various sulfur compounds. Doped sulfur fuel (3300 to 4000 ppm S) was used to increase the concentrations of the various oxides of sulfur (SOx). These tests were performed at mode 9 of the old EPA 13-mode test cycle (1800 RPM, 932N*m) with 17-20% exhaust gas recirculation (EGR) at two EGR outlet temperatures: 160°C and 103°C.
Technical Paper

A Study of the Dilution Effects on Particle Size Measurement from a Heavy-Duty Diesel Engine with EGR

2001-03-05
2001-01-0220
A study of particle size distributions was conducted on a Cummins M11 1995 engine using the Scanning Mobility Particle Sizer (SMPS) instrument in the baseline and downstream of the Catalyzed Particulate Filter (CPF). Measurements were made in the dilution tunnel to investigate the effect of primary dilution ratio and mixture temperature on the nuclei and accumulation mode particle formation. Experiments were conducted at two different engine modes namely Mode 11 (25% load - 311 Nm, 1800 rpm) and Mode 9 (75% load - 932 Nm, 1800 rpm). The nanoparticle formation decreased with increasing dilution ratios for a constant mixture temperature in the baseline as well as downstream of the CPF II for Mode 11 condition. At Mode 9 condition in the baseline, the dilution ratio had a little effect on the nanoparticle formation, since the distribution was not bimodal and was dominated by accumulation mode particles.
Technical Paper

A Study of the Effect of a Catalyzed Particulate Filter on the Emissions from a Heavy-Duty Diesel Engine with EGR

2001-03-05
2001-01-0910
The effects of a catalyzed particulate filter (CPF) and Exhaust Gas Recirculation (EGR) on heavy-duty diesel engine emissions were studied in this research. EGR is used to reduce the NOx emissions but at the same time it can increase total particulate matter (TPM) emissions. CPF is technology available for retrofitting existing vehicles in the field to reduce the TPM emissions. A conventional low sulfur fuel (371 ppm S) was used in all the engine runs. Steady-state loading and regeneration experiments were performed with CPF I to determine its performance with respect to pressure drop and particulate mass characteristics at different engine operating conditions. From the dilution tunnel emission characterization results for CPF II, at Mode 11 condition (25% load - 311 Nm, 1800 rpm), the TPM, HC and vapor phase emissions (XOC) were decreased by 70%, 62% and 62% respectively downstream of the CPF II.
Technical Paper

A Study of the Effects of Exhaust Gas Recirculation on Heavy-Duty Diesel Engine Emissions

1998-05-04
981422
The effects of exhaust gas recirculation (EGR) on heavy-duty diesel emissions were studied at two EPA steady-state operating conditions, old EPA mode 9* (1800 RPM, 75% Load) and old EPA mode 11 (1800 RPM, 25% Load). Data were collected at the baseline, 10% and 16% EGR rates for both EPA modes. The study was conducted using a 1995 Cummins M11-330E heavy-duty diesel engine and compared to the baseline emissions from the Cummins 1988 and 1991 L10 engines. The baseline gas-, vapor- and particle-phase emissions were measured together with the particle size distributions at all modes of operation. The total particulate matter (TPM) and vapor phase (XOC) samples were analyzed for physical, chemical and biological properties. The results showed that newer engines with electronic engine controls and higher injector pressures produce TPM decreases from the 1988 to 1991 to 1995 engines with the solids decreasing more than the soluble organic fraction (SOF) of TPM.
Technical Paper

A Theoretical and Experimental Study of the Regeneration Process in a Silicon Carbide Particulate Trap Using a Copper Fuel Additive

1997-02-24
970188
The purpose of this study was to investigate the pressure drop and regeneration characteristics of a silicon carbide (SiC) wall-flow diesel particulate filter. The performance of a 25 μm mean pore size SiC dual trap system (DTS) consisting of two 12 liter traps connected in parallel in conjunction with a copper (Cu) fuel additive was evaluated. A comparison between the 25 μm DTS and a 15 μm DTS was performed, in order to show the effect of trap material mean pore size on trap loading and regeneration behavior. A 1988 Cummins LTA 10-300 diesel engine was used to evaluate the performance of the 15 and 25 μm DTS. A mathematical model was developed to better understand the thermal and catalytic oxidation of the particulate matter. For all the trap steady-state loading tests, the engine was run at EPA mode 11 for 10 hours. Raw exhaust samples were taken upstream and downstream of the trap system in order to determine the DTS filtration efficiency.
Technical Paper

Accurate Measurements of Heat Release, Oxidation Rates, and Soluble Organic Compounds of Diesel Particulates through Thermal Reactions

2010-04-12
2010-01-0814
In an effort of providing better understanding of regeneration mechanisms of diesel particulate matter (PM), this experimental investigation focused on evaluating the amount of heat release generated during the thermal reaction of diesel PM and the concentrations of soluble organic compounds (SOCs) dissolved in PM emissions. Differences in oxidation behaviors were observed for two different diesel PM samples: a SOC-containing PM sample and a dry soot sample with no SOCs. Both samples were collected from a cordierite particulate filter membrane in a thermal reactor connected to the exhaust pipe of a light-duty diesel engine. A differential scanning calorimeter (DSC) and a thermogravimetric analyzer (TGA) were used to measure the amount of heat release during oxidation, along with subsequent oxidation rates and the concentrations of SOCs dissolved in particulate samples, respectively.
Technical Paper

Achieving Stable Engine Operation of Gasoline Compression Ignition Using 87 AKI Gasoline Down to Idle

2015-04-14
2015-01-0832
For several years there has been a great deal of effort made in researching ways to run a compression ignition engine with simultaneously high efficiency and low emissions. Recently much of this focus has been dedicated to using gasoline-like fuels that are more volatile and less reactive than conventional diesel fuel to allow the combustion to be more premixed. One of the key challenges to using fuels with such properties in a compression ignition engine is stable engine operation at low loads. This paper provides an analysis of how stable gasoline compression ignition (GCI) engine operation was achieved down to idle speed and load on a multi-cylinder compression ignition engine using only 87 anti-knock index (AKI) gasoline. The variables explored to extend stable engine operation to idle included: uncooled exhaust gas recirculation (EGR), injection timing, injection pressure, and injector nozzle geometry.
Technical Paper

Adapting Validation Processes to Meet Worldwide Market Demands

2014-04-01
2014-01-1437
Heavy duty diesel engine development has always faced high customer durability requirements, short development timelines and increasingly stringent emissions legislations. However, more frequently heavy duty engines are being used in multiple vehicle platforms across the globe with increasingly stringent quality demands in emerging markets. In order to meet engine life requirements, Delphi Diesel Systems has adapted accepted validation procedures to evaluate their system performance for the global market. In addition to durability and structural testing Delphi Diesel Systems has introduced specialized tests to validate their product at extremes of environmental conditions and fuel properties and has increased OEM collaboration. This paper details some of the adjustments made to the validation test suite to meet the specific challenges of the Heavy Duty market.
Technical Paper

Advanced Low Temperature Combustion (ALTC): Diesel Engine Performance, Fuel Economy and Emissions

2008-04-14
2008-01-0652
The objective of this work is to develop a strategy to reduce the penalties in the diesel engine performance, fuel economy and HC and CO emissions, associated with the operation in the low temperature combustion regime. Experiments were conducted on a research high speed, single cylinder, 4-valve, small-bore direct injection diesel engine equipped with a common rail injection system under simulated turbocharged conditions, at IMEP = 3 bar and engine speed = 1500 rpm. EGR rates were varied over a wide range to cover engine operation from the conventional to the LTC regime, up to the misfiring point. The injection pressure was varied from 600 bar to 1200 bar. Injection timing was adjusted to cover three different LPPCs (Location of the Peak rate of heat release due to the Premixed Combustion fraction) at 10.5° aTDC, 5 aTDC and 2 aTDC. The swirl ratio was varied from 1.44 to 7.12. Four steps are taken to move from LTC to ALTC.
Technical Paper

An Experimental Assessment of Turbulence Production, Reynolds Stress and Length Scale (Dissipation) Modeling in a Swirl-Supported DI Diesel Engine

2003-03-03
2003-01-1072
Simultaneous measurements of the radial and the tangential components of velocity are obtained in a high-speed, direct-injection diesel engine typical of automotive applications. Results are presented for engine operation with fuel injection, but without combustion, for three different swirl ratios and four injection pressures. With the mean and fluctuating velocities, the r-θ plane shear stress and the mean flow gradients are obtained. Longitudinal and transverse length scales are also estimated via Taylor's hypothesis. The flow is shown to be sufficiently homogeneous and stationary to obtain meaningful length scale estimates. Concurrently, the flow and injection processes are simulated with KIVA-3V employing a RNG k-ε turbulence model. The measured turbulent kinetic energy k, r-θ plane mean strain rates ( 〈Srθ〉, 〈Srr〉, and 〈Sθθ〉 ), deviatoric turbulent stresses , and the r-θ plane turbulence production terms are compared directly to the simulated results.
Technical Paper

An Investigation of Particulate Morphology, Microstructures, and Fractal Geometry for ael Diesel Engine-Simulating Combustor

2004-10-25
2004-01-3044
The particulate matter (PM) produced from a diesel engine-simulating combustor was characterized in its morphology, microstructure, and fractal geometry by using a unique thermophoretic sampling and Transmission Electron Microscopy (TEM) system. These results revealed that diesel PM produced from the laboratory-scale burner showed similar morphological characteristics to the particulates produced from diesel engines. The flame air/fuel ratio and the particulate temperature history have significant influences on both particle size and fractal geometry. The primary particle sizes were measured to be 14.7 nm and 14.8 nm under stoichiometric and fuel-rich flame conditions, respectively. These primary particle sizes are smaller than those produced from diesel engines. The radii of gyration for the aggregate particles were 83.8 nm and 47.5 nm under these two flame conditions.
X