Refine Your Search

Topic

Search Results

Viewing 1 to 15 of 15
Technical Paper

A Connected Controls and Optimization System for Vehicle Dynamics and Powertrain Operation on a Light-Duty Plug-In Multi-Mode Hybrid Electric Vehicle

2020-04-14
2020-01-0591
This paper presents an overview of the connected controls and optimization system for vehicle dynamics and powertrain operation on a light-duty plug-in multi-mode hybrid electric vehicle developed as part of the DOE ARPA-E NEXTCAR program by Michigan Technological University in partnership with General Motors Co. The objective is to enable a 20% reduction in overall energy consumption and a 6% increase in electric vehicle range of a plug-in hybrid electric vehicle through the utilization of connected and automated vehicle technologies. Technologies developed to achieve this goal were developed in two categories, the vehicle control level and the powertrain control level. Tools at the vehicle control level include Eco Routing, Speed Harmonization, Eco Approach and Departure and in-situ vehicle parameter characterization.
Technical Paper

A Controlled EGR Cooling System for Heavy Duty Diesel Applications Using the Vehicle Engine Cooling System Simulation

2002-03-04
2002-01-0076
In order to comply with 2002 EPA emissions regulations, cooled exhaust gas recirculation (EGR) will be used by heavy duty (HD) diesel engine manufacturers as the primary means to reduce emissions of nitrogen oxides (NOx). A feedforward controlled EGR cooling system with a secondary electric water pump and proportional-integral-derivative (PID) feedback has been designed to cool the recirculated exhaust gas in order to better realize the benefits of EGR without overcooling the exhaust gas since overcooling leads to the fouling of the EGR cooler with acidic residues. A system without a variable controlled coolant flow rate is not able to achieve these goals because the exhaust temperature and the EGR schedule vary significantly, especially under transient and warm-up operating conditions. Simulation results presented in this paper have been determined using the Vehicle Engine Cooling System Simulation (VECSS) software, which has been developed and validated using actual engine data.
Technical Paper

A Study of the Effect of Oil and Coolant Temperatures on Diesel Engine Brake Specific Fuel Consumption

1977-02-01
770313
Diesel engine fuel consumption is mainly a function of engine component design and power requirements. However, fuel consumption can also be affected by the environment in which the engine operates. This paper considers two controlling parameters of the engine's thermal environment, oil temperature and coolant temperature. The effects of oil and coolant temperatures on Brake Specific Fuel Consumption (BSFC) are established for a turbocharged diesel engine. Data are also presented for a direct injection, naturally aspirated diesel engine. A matrix of test conditions was run on a Cummins VT-903 diesel engine to evaluate the effects of oil and coolant temperatures on BSFC for several loads and speeds. Loads and speeds were selected based on where a typical semi-tractor engine would operate over the road on a hills and curves route. Oil temperature was monitored and controlled between the oil cooler and the engine. Coolant temperature was monitored and controlled at the engine outlet.
Technical Paper

An Efficient IC Engine Conjugate Heat Transfer Calculation for Cooling System Design

2007-04-16
2007-01-0147
This study focuses on how to predict hot spots of one of the cylinders of a V8 5.4 L FORD engine running at full load. The KIVA code with conjugate heat transfer capability to simulate the fast transient heat transfer process between the gas and the solid phases has been developed at the Michigan Technological University and will be used in this study. Liquid coolant flow was simulated using FLUENT and will be used as a boundary condition to account for the heat loss to the cooling fluid. In the first step of calculation, the coupling between the gas and the solid phases will be solved using the KIVA code. A 3D transient wall heat flux at the gas-solid interface is then compiled and used along with the heat loss information from the FLUENT data to obtain the temperature distribution for the engine metal components, such as cylinder wall, cylinder head, etc.
Technical Paper

Deliver Signal Phase and Timing (SPAT) for Energy Optimization of Vehicle Cohort Via Cloud-Computing and LTE Communications

2023-04-11
2023-01-0717
Predictive Signal Phase and Timing (SPAT) message set is one fundamental building block for vehicle-to-infrastructure (V2I) applications such as Eco-Approach and Departure (EAD) at traffic signal controlled urban intersections. Among the two complementary communication methods namely short-range sidelink (PC5) and long-range cellular radio link (Uu), this paper documents the work with long-range link: the complete data chain includes connecting to the traffic signals via existing backhaul communication network, collecting the raw signal phase state data, predicting the signal state changes and delivering the SPAT data via a geofenced service to requests over HTTP protocols. An Application Programming Interface (API) library is developed to support various cellular data transmission reduction and latency improvement techniques.
Technical Paper

Development of the Enhanced Vehicle and Engine Cooling System Simulation and Application to Active Cooling Control

2005-04-11
2005-01-0697
The increasing complexity of vehicle engine cooling systems results in additional system interactions. Design and evaluation of such systems and related interactions requires a fully coupled detailed engine and cooling system model. The Vehicle Engine Cooling System Simulation (VECSS) developed at Michigan Technological University was enhanced by linking with GT-POWER for the engine/cycle analysis model. Enhanced VECSS (E-VECSS) predicts the effects of cooling system performance on engine performance including accessory power and fuel conversion efficiency. Along with the engine cycle, modeled components include the engine manifolds, turbocharger, radiator, charge-air-cooler, engine oil circuit, oil cooler, cab heater, coolant pump, thermostat, and fan. This tool was then applied to develop and simulate an actively controlled electric cooling system for a 12.7 liter diesel engine.
Technical Paper

Development of the MTU Automatic Shifting Manual Six Speed Transmission

2006-04-03
2006-01-0747
The purpose of this report is to describe the process for the development of the automatically shifting manual transmission control system hardware and software to be used in the MTU Challenge X Equinox, a through-the-road parallel hybrid electric vehicle. The automatically shifting manual transmission was chosen for development, as it combines the ease of use of an automatic transmission with the fuel efficiency of a manual, while eliminating the parasitic losses in the torque converter and the transmission hydraulic pump. This report illustrates the process used to develop the software-in-the loop modeling that was developed for the initial proof of concept. In addition, it describes the development of the control strategy and hardware build for the prototype transmission. To begin the design process research was preformed on existing automatically shifting manuals and manual transmissions in general. From there vehicle subsystems were assembled using Simulink block diagrams.
Journal Article

Model-Based Estimation and Control System Development in a Urea-SCR Aftertreatment System

2008-04-14
2008-01-1324
In this paper, a model-based linear estimator and a non-linear control law for an Fe-zeolite urea-selective catalytic reduction (SCR) catalyst for heavy duty diesel engine applications is presented. The novel aspect of this work is that the relevant species, NO, NO2 and NH3 are estimated and controlled independently. The ability to target NH3 slip is important not only to minimize urea consumption, but also to reduce this unregulated emission. Being able to discriminate between NO and NO2 is important for two reasons. First, recent Fe-zeolite catalyst studies suggest that NOx reduction is highly favored by the NO 2 based reactions. Second, NO2 is more toxic than NO to both the environment and human health. The estimator and control law are based on a 4-state model of the urea-SCR plant. A linearized version of the model is used for state estimation while the full nonlinear model is used for control design.
Journal Article

Multi-Physics and CFD Analysis of an Enclosed Coaxial Carbon Nanotube Speaker for Automotive Exhaust Noise Cancellation

2019-06-05
2019-01-1569
Automotive exhaust noise is one of the major sources of noise pollution and it is controlled by passive control system (mufflers) and active control system (loudspeakers and active control algorithm). Mufflers are heavy, bulky and large in size while loudspeakers have a working temperature limitation. Carbon nanotube (CNT) speakers generate sound due to the thermoacoustic effect. CNT speakers are also lightweight, flexible, have acoustic and light transparency as well as high operating temperature. These properties make them ideal to overcome the limitations of the current exhaust noise control systems. An enclosed, coaxial CNT speaker is designed for exhaust noise cancellation application. The development of a 3D multi-physics (coupling of electrical, thermal and acoustical domains) model, for the coaxial speaker is discussed in this paper. The model is used to simulate the sound pressure level, input power versus ambient temperature and efficiency.
Technical Paper

Probing Spark Discharge Behavior in High-speed Cross-flows through Modeling and Experimentation

2020-04-14
2020-01-1120
This paper presents a combined numerical and experimental investigation of the characteristics of spark discharge in a spark-ignition engine. The main objective of this work is to gain insights into the spark discharge process and early flame kernel development. Experiments were conducted in an inert medium within an optically accessible constant-volume combustion vessel. The cross-flow motion in the vessel was generated using a previously developed shrouded fan. Numerical modeling was based on an existing discharge model in the literature developed by Kim and Anderson. However, this model is applicable to a limited range of gas pressures and flow fields. Therefore, the original model was evaluated and improved to predict the behavior of spark discharge at pressurized conditions up to 45 bar and high-speed cross-flows up to 32 m/s. To accomplish this goal, a parametric study on the spark channel resistance was conducted.
Technical Paper

The Design and Testing of a Computer-Controlled Cooling System for a Diesel-Powered Truck

1984-11-01
841712
The hardware and software for a prototype computer controlled cooling system for a diesel powered truck has been designed and tested. The basic requirements for this system have been defined and the control functions, previously investigated in a study using the computer simulation model, were incorporated into the software. Engine dynamometer tests on the MACK-676 engine, comparing the conventional cooling system and the computer controlled system, showed the following advantages of the computer controlled system: 1. The temperature level to which the engine warms up to at low ambient temperature, was increased. 2. The faster shutter response reduced the temperature peaks and decreased total fan activity time. 3. The faster fan response reduces fan engagement time which should improve truck fuel economy.
Technical Paper

The Dimensionless Correlation of Airflow for Vehicle Engine Cooling Systems

1991-02-01
910643
An analysis of vehicle engine cooling airflow by means of a one-dimensional, transient, compressible flow model was carried out and revealed that similarity theory could be applied to investigate the variation of the airflow with ambient and operating conditions. It was recognized that for a given vehicle engine cooling system, the cooling airflow behavior could be explained using several dimensionless parameters that involve the vehicle speed, fan speed, heat transfer rate through the radiator, ambient temperature and pressure, and the system characteristic dimension. Using the flow resistance and fan characteristics measured from a prototype cooling system and the computer simulation for the one-dimensional compressible flow model, a quantitative correlation of non-dimensional mass flow rate to three dimensionless parameters for a prototype heavy-duty truck was established. The results are presented in charts, tables, and formulas.
Technical Paper

The Effect of Oil and Coolant Temperatures on Diesel Engine Wear

1977-02-01
770086
A study has been made of piston ring wear and total engine wear using literature data and new experimental results. The main purpose of the study was to establish the effects of oil and coolant temperatures on engine wear. Wear trends that were found in the early 1960's may not be valid any longer because of the development of higher BMEP turbocharged diesel engines, better metallurgical wear surfaces and improved lube oil properties. New data are presented for the purpose of describing present wear trends. A direct-injection, 4-cycle, turbocharged diesel engine was used for the wear tests. The radioactive tracer technique was used to measure the top piston ring chrome face wear. Atomic emission spectroscopy was employed to determine the concentration of wear metals in the oil to determine total engine wear based on iron and lead. The data were analyzed and compared to the results found in the literature from previous investigators.
Technical Paper

The Theoretical Development of Vehicle Engine Cooling Airflow Models Using Incompressible Flow Methods

1991-02-01
910644
A one-dimensional incompressible flow model covering the mechanisms involved in the airflow through an automotive radiator-shroud-fan system with no heat transfer was developed. An analytical expression to approximate the experimentally determined fan performance characteristics was used in conjunction with an analytical approach for this simplified cooling airflow model, and the solution is discussed with illustrations. A major result of this model is a closed form equation relating the transient velocity of the air to the vehicle speed, pressure rise characteristics and speed of the fan, as well as the dimensions and resistance of the radiator. This provides a basis for calculating cooling airflow rate under various conditions. The results of the incompressible flow analysis were further compared with the computational results obtained with a previously developed one-dimensional, transient, compressible flow model.
Technical Paper

The Vehicle Engine Cooling System Simulation Part 1 - Model Development

1999-03-01
1999-01-0240
The Vehicle Engine Cooling System Simulation (VECSS) computer code has been developed at the Michigan Technological University to simulate the thermal response of the cooling system of an on-highway heavy duty diesel powered truck under steady and transient operation. This code includes an engine cycle analysis program along with various components for the four main fluid circuits for cooling air, cooling water, cooling oil, and intake air, all evaluated simultaneously. The code predicts the operation of the response of the cooling circuit, oil circuit, and the engine compartment air flow when the VECSS is operated using driving cycle data of vehicle speed, engine speed, and fuel flow rate for a given ambient temperature, pressure and relative humidity.
X