Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

50,000 Mile Vehicle Road Test of Three-Way and NOx Reduction Catalyst Systems

1978-02-01
780608
The performance of three way and NOx catalysts was evaluated on vehicles utilizing non-feedback fuel control and electronic feedback fuel control. The vehicles accumulated 80,450 km (50,000 miles) using fuels representing the extremes in hydrogen-carbon ratio available for commercial use. Feedback carburetion compared to non-feedback carburetion improved highway fuel economy by about 0.4 km/l (1 mpg) and reduced deterioration of NOx with mileage accumulation. NOx emissions were higher with the low H/C fuel in the three way catalyst system; feedback reduced the fuel effect on NOx in these cars by improving conversion efficiency with the low H/C fuel. Feedback had no measureable effect on HC and CO catalyst efficiency. Hydrocarbon emissions were lower with the low H/C fuel in all cars. Unleaded gasoline octane improver, MMT, at 0.015g Mn/l (0.06 g/gal) increased tailpipe hydrocarbon emissions by 0.05 g/km (0.08 g/mile).
Technical Paper

A 2-D Computational Model Describing the Heat Transfer, Reaction Kinetics and Regeneration Characteristics of a Ceramic Diesel Particulate Trap

1998-02-23
980546
A 2-D CFD model was developed to describe the heat transfer, and reaction kinetics in a honeycomb structured ceramic diesel particulate trap. This model describes the steady state as well as the transient behavior of the flow and heat transfer during the trap regeneration processes. The trap temperature profile was determined by numerically solving the 2-D unsteady energy equation including the convective, heat conduction and viscous dissipation terms. The convective terms were based on a 2-D analytical flow field solution derived from the conservation of mass and momentum equations (Opris, 1997). The reaction kinetics were described using a discretized first order Arrhenius function. The 2-D term describing the reaction kinetics and particulate matter conservation of mass was added to the energy equation as a source term in order to represent the particulate matter oxidation. The filtration model describes the particulate matter accumulation in the trap.
Technical Paper

A Drum Brake Squeal Analysis in the Time Domain

2005-05-16
2005-01-2312
Brake squeal has been a chronic customer complaint, often appearing high on the list of items that reduce customers' satisfaction with their vehicles. Brake squeal can emanate from either a drum brake or a disc brake even though the geometry of the two systems is significantly different. A drum brake generates friction within a cylindrical drum interacting with two semi-circular linings. A disc brake consists of a flat disc and two flat pads. The observed squeal behavior in a vehicle differs somewhat between drum and disc brakes. A drum brake may have a loud noise coming from three or more squeal frequencies, whereas a disc brake typically has one or two major squeal frequencies making up the noise. A good understanding of the operational deflection shapes of the brake components during noise events will definitely aid in design to reduce squeal occurrences and improve product quality.
Technical Paper

A Modeling Analysis of Fibrous Media for Gasoline Particulate Filters

2017-03-28
2017-01-0967
With an emerging need for gasoline particulate filters (GPFs) to lower particle emissions from gasoline direct injection (GDI) engines, studies are being conducted to optimize GPF designs in order to balance filtration efficiency, backpressure penalty, filter size, cost and other factors. Metal fiber filters could offer additional designs to the GPF portfolio, which is currently dominated by ceramic wall-flow filters. However, knowledge on their performance as GPFs is still limited. In this study, modeling on backpressure and filtration efficiency of fibrous media was carried out to determine the basic design criteria (filtration area, filter thickness and size) for different target efficiencies and backpressures at given gas flow conditions. Filter media with different fiber sizes (8 - 17 μm) and porosities (80% - 95%) were evaluated using modeling to determine the influence of fiber size and porosity.
Journal Article

A New Catalyzed HC Trap Technology that Enhances the Conversion of Gasoline Fuel Cold-Start Emissions

2018-04-03
2018-01-0938
Passive in-line catalyzed hydrocarbon (HC) traps have been used by some manufacturers in the automotive industry to reduce regulated tailpipe (TP) emissions of non-methane organic gas (NMOG) during engine cold-start conditions. However, most NMOG molecules produced during gasoline combustion are only weakly adsorbed via physisorption onto the zeolites typically used in a HC trap. As a consequence, NMOG desorption occurs at low temperatures resulting in the use of very high platinum group metal (PGM) loadings in an effort to combust NMOG before it escapes from a HC trap. In the current study, a 2.0 L direct-injection (DI) Ford Focus running on gasoline fuel was evaluated with full useful life aftertreatment where the underbody converter was either a three-way catalyst (TWC) or a HC trap. A new HC trap technology developed by Ford and Umicore demonstrated reduced TP NMOG emissions of 50% over the TWC-only system without any increase in oxides of oxygen (NOx) emissions.
Technical Paper

A New Experimental Methodology to Estimate Chassis Force Transmissibility and Applications to Road NVH Improvement

2003-05-05
2003-01-1711
The performance of structure-borne road NVH can be cascaded down to three major systems: 1) vehicle body structure, 2) chassis/suspension, 3) tire/wheel. The forces at the body attachment points are controlled by the isolation efficiency of the chassis/suspension system and the excitation at the spindle/knuckle due to the tire/road interaction. The chassis force transmissibility is a metric to quantify the isolation efficiency. This paper presents a new experimental methodology to estimate the chassis force transmissibility from a fully assembled vehicle. For the calculation of the transmissibility, the spindle force/moment estimation and the conventional Noise Path Analysis (NPA) methodologies are utilized. A merit of the methodology provides not only spindle force to body force transmissibility but also spindle moment to body force transmissibility. Hence it enables us to understand the effectiveness of the spindle moments on the body forces.
Technical Paper

A Simplified Method to Make Temperature Measurements of a Metal Surface using the Surface as One Component of Thermocouple

2008-04-14
2008-01-0918
Instrumentation of an exhaust system to measure surface temperature at multiple locations usually involves welding independent thermocouples to the surface of the system. This report describes a new type of thermocouple fabricated to measure temperature at a point or temperature difference between points on a metallic object utilizing the metal as one component of the new thermocouple. AISI 316 stainless steel is used in the current study to represent automotive exhaust pipe. The other component of the thermocouple is Nickel-Chromium (Chromel, Chromega), one of the two metals used in type K thermocouples, which are generally used for exhaust temperature measurements during emission tests. Use of the new thermocouple is contingent upon an accurate calibration of its response to changes in temperature.
Technical Paper

A Study of the Filtration and Oxidation Characteristics of a Diesel Oxidation Catalyst and a Catalyzed Particulate Filter

2007-04-16
2007-01-1123
An experimental and modeling study was conducted to study the passive regeneration of a catalyzed particulate filter (CPF) by the oxidation of particulate matter (PM) via thermal and Nitrogen dioxide/temperature-assisted means. Emissions data in the exhaust of a John Deere 6.8 liter, turbocharged and after-cooled engine with a low-pressure loop EGR and a diesel oxidation catalyst (DOC) - catalyzed particulate filter (CPF) in the exhaust system was measured and used for this study. A series of experiments was conducted to evaluate the performance of the DOC, CPF and DOC+CPF configurations at various engine speeds and loads.
Technical Paper

A Systematic Approach to Preparing Drive Files for Squeak and Rattle Evaluations of Subsystems or Components

2007-05-15
2007-01-2269
Many decisions need to be made when test track data is used to set up Squeak & Rattle evaluations of subsystems or components. These decisions are judgment-based so different people with different backgrounds and experience levels will make different decisions - few of which can be called right or wrong - but they are different which causes problems. Squeak & Rattle evaluation has become more scientific in recent years as subjective evaluation has been replaced by quantitative methods like N10 Loudness and shakers have become quiet. It is the authors' contention that the variations caused by different judgment calls can no longer be tolerated. Therefore a methodical process was developed which assures that different people will get the same results from the same set of test track data.
Technical Paper

A Systems Approach to Eliminating Squeal in a Drum Brake

2008-10-12
2008-01-2531
The traditional analysis of squeal noise for drum brakes is done in a separate approach, with CAE and laboratory/experimental techniques done independently or in a non-iterative sequential manner. In this paper, an innovative approach of directing the frequency response testing based on CAE is used and the overall process is embedded in a system approach. The drum brake design was changed to accomplish higher loads in a car. The initial results of the tests came out noise during the vehicle test. After retrieving the noisy parts from the vehicle, it was tested for frequency response, but in a directional manner suggested by the CAE model. This new approach hasn't been done before in industry practice. The CAE identified that two modes (around the noise frequency) swapped their orders compared to the old design and suggested design changes. The new design was evaluated with a mocked up prototype. This was followed by getting cast parts and testing them for frequency response.
Technical Paper

A Topographically Structural Optimization Methodology for Improving Noise Radiation in Transaxles

2007-05-15
2007-01-2287
In this paper, a new technology for the design of silent transaxles is developed, where topography optimization is adopted and an artificial parameter called β is proposed as an objective function, representing an upper bound of the surface velocity. The strategy of the optimization is to minimize β while getting the surface velocities less than β. as the constraints. A numerical example of reducing transaxle's radiated noise by using the new optimization technology is given in the paper. In the example, an entire Ford transaxle system was modeled numerically, where most internal components were included. First a modal frequency velocity analysis was conducted. Then an acoustic power analysis based on the Acoustic Transfer Vector (ATV) was carried out. Finally, a topography optimization based on the β - method for the transaxle was performed to minimize the radiated noise.
Technical Paper

A Transient, Multi-Cylinder Engine Model Using Modelica

2003-10-27
2003-01-3127
This paper describes a transient, thermodynamic, crank angle-based engine model in Modelica that can be used to simulate a range of advanced engine technologies. A single cylinder model is initially presented and described, along with its validation against steady-state dynamometer test data. Issues related to this single cylinder validation are discussed, including the appropriate conservation of hot residual gases under very early intake valve opening (IVO) conditions. From there, the extension from a single cylinder to a multi-cylinder V8 engine model is explained and simulation results are presented for a transient cylinder-deactivation scenario on a V8 engine.
Technical Paper

A Variable Displacement Supercharger Performance Evaluation

2017-03-28
2017-01-0640
The Variable Displacement Supercharger (VDS) is a twin helical screw style compressor that has a feature to change its displacement and its compression ratio actively during vehicle operation. This device can reduce the parasitic losses associated with supercharging and improve the relative fuel economy of a supercharged engine. Supercharging is a boosting choice with several advantages over turbocharging. There is fast pressure delivery to the engine intake manifold for fast engine torque response providing the fun to drive feel. The performance delivered by a supercharger can enable engine fuel economy actions to include engine downsizing and downspeeding. The cost and difficulty of engineering hot exhaust components is eliminated when using only an air side compressor. Faster catalyst warm up can be achieved when not warming the turbine housing of a turbocharger.
Technical Paper

A View of Flexible Fuel Vehicle Aldehyde Emissions

1988-08-01
881200
The aldehyde emissions of 1.6L and 5.0L flexible fuel vehicles (FFV) have been measured, with and without a catalyst, on a range of fuels. The “zero mile” catalyzed emission levels of formaldehyde when operating on M85 (85% methanol and 15% gasoline) are in the 5-15 mg/mi range, but as mileage accumulates they tend to be in the 30-50 mg/mi range. The feedgas levels are high and appear to correlate with engine displacement. The formaldehyde and methanol emissions are higher when operating on M100, compared to M85, but the non-oxygenated hydrocarbon emissions are about the same for both fuels, which suggests that the use of M85 may actually provide more air quality benefit than M100. High mileage control of aldehydes to the level of gasoline vehicles does not appear possible with current technology.
Technical Paper

A/C Moan - its Diagnostics and Control

2009-05-19
2009-01-2054
Air-conditioning (A/C) induced moan is a very commonly observed phenomenon in automotive refrigerant systems. Since most of the automotive A/C systems cycle ON/OFF four to six times every minute, the A/C induced moan is quite readily audible under engine idle and even while driving, especially under lower engine/vehicle speeds. It is not unusual for an A/C compressor to moan or not, on some vehicle/s under certain operating conditions. Most of the OEMs resolve or suppress the A/C moan potential to barely audible levels. However, under some unique and extreme operating conditions, A/C moan is quite readily induced and often results in customer complaints. This paper discusses A/C moan related root-causes, sources and paths of propagation. A systematic diagnostic test-procedure is also described to diagnose and develop the needed most cost-effective design-fixes. Finally, based on this case-study - some objective targets are recommended to suppress the A/C moan to acceptable levels.
Technical Paper

Adequacy of Reduced Order Models for Model-Based Control in a Urea-SCR Aftertreatment System

2008-04-14
2008-01-0617
Model-based control strategies are important for meeting the dual objective of maximizing NOx reduction and minimizing NH3 slip in urea-SCR catalysts. To be implementable on the vehicle, the models should capture the essential behavior of the system, while not being computationally intensive. This paper discusses the adequacy of two different reduced order SCR catalyst models and compares their performance with a higher order model. The higher order model assumes that the catalyst has both diffusion and reaction kinetics, whereas the reduced order models contain only reaction kinetics. After describing each model, its parameter identification and model validation based on experiments on a Navistar I6 7.6L engine are presented. The adequacy of reduced order models is demonstrated by comparing the NO, NO2 and NH3 concentrations predicted by the models to their concentrations from the test data.
Technical Paper

An Analytical Methodology for Engine Gear Rattle and Whine Assessment and Noise Simulation

2019-04-02
2019-01-0799
In this paper, a CAE methodology based on a multiphysics approach for engine gear noise evaluation is reviewed. The method comprises the results and outputs from several different analytical domains to perform the noise risk assessment. The assessment includes the source-path analysis of the gear-induced rattling and whining noise. The vibration data from the exterior surface of the engine is extended through acoustic analysis to perform the engine noise simulation and to identify acoustic hot spots contributing to the noise. The study includes simulations under different engine loading conditions with results presented in both time and frequency domains. Various sensitivity analyses involving different gear geometries and micro-geometries are investigated as well. Finally, the simulation results from three different engines are compared vis-a-vis.
Technical Paper

An Experimental and Numerical Study of the Performance Characteristics of the Diesel Oxidation Catalyst in a Continuously Regenerating Particulate Filter

2003-10-27
2003-01-3176
A one-dimensional model simulating the oxidation of CO, HC, and NO was developed to predict the gaseous emissions downstream of a diesel oxidation catalyst (DOC). The model is based on the conservation of mass, species, and energy inside the DOC and draws on past research literature. Steady-state experiments covering a wide range of operating conditions (exhaust temperatures, flow rates and gaseous emissions) were performed, and the data were used to calibrate and validate the model. NO conversion efficiencies of 50% or higher were obtained at temperatures between 300°C and 350°C. CO conversion efficiencies of 85% or higher and HC conversion efficiencies of 75% or higher were found at every steady state condition above 200°C. The model agrees well with the experimental results at temperatures from 200°C to 500°C, and volumetric flow rates from 8 to 42 actual m3/min.
Journal Article

Analysis of Ash in Low Mileage, Rapid Aged, and High Mileage Gasoline Exhaust Particle Filters

2017-03-28
2017-01-0930
To meet future particle mass and particle number standards, gasoline vehicles may require particle control, either by way of an exhaust gas filter and/or engine modifications. Soot levels for gasoline engines are much lower than diesel engines; however, non-combustible material (ash) will be collected that can potentially cause increased backpressure, reduced power, and lower fuel economy. The purpose of this work was to examine the ash loading of gasoline particle filters (GPFs) during rapid aging cycles and at real time low mileages, and compare the filter performances to both fresh and very high mileage filters. Current rapid aging cycles for gasoline exhaust systems are designed to degrade the three-way catalyst washcoat both hydrothermally and chemically to represent full useful life catalysts. The ash generated during rapid aging was low in quantity although similar in quality to real time ash. Filters were also examined after a low mileage break-in of approximately 3000 km.
Technical Paper

Analysis of Automatic Speech Recognition Failures in the Car

2019-04-02
2019-01-0397
In this paper, an approach to analyze voice recognition data to understand how customers use voice recognition systems is explored. The analysis will help identify ASR failures and usability related issues that customers encounter while using the voice recognition system. This paper also examines the impact of these failures on the individual speech domains (media control, phone, navigation, etc.). Such information can be used to improve the current voice recognition system and direct the design of future systems. Infotainment system logs, audio recordings of the voice interactions, their transcriptions and CAN bus data were identified to be rich sources of data to analyze voice recognition usage. Infotainment logs help understand how the system interpreted or responded to customer commands and at what confidence level.
X