Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

1-D Modeling of Transient Engine Operations Using Data Generated by a CFD Code

2008-04-14
2008-01-0357
Transient engine operations are modeled and simulated with a 1-D code (GT Power) using heat release and emission data computed by a 3-D CFD code (Kiva3). During each iteration step of a transient engine simulation, the 1-D code utilizes the 3-D data to interpolate the values for heat release and emissions. The 3-D CFD computations were performed for the compression and combustion stroke of strategically chosen engine operating points considering engine speed, torque and excess air. The 3-D inlet conditions were obtained from the 1-D code, which utilized 3-D heat release data from the previous 1-D unsteady computations. In most cases, only two different sets of 3-D input data are needed to interpolate the transient phase between two engine operating points. This keeps the computation time at a reasonable level. The results are demonstrated on the load response of a generator which is driven by a medium-speed diesel engine.
Technical Paper

2005 Ford GT - Vehicle Aerodynamics - Updating a Legend

2004-03-08
2004-01-1254
This paper documents the processes and methods used by the Ford GT team to meet aerodynamic targets. Methods included Computational Fluid Dynamics (CFD) analysis, wind tunnel experiments (both full-size and scale model), and on-road experiments and measurements. The goal of the team was to enhance both the high-speed stability and track performance of the GT. As a result of the development process, significant front and rear downforce was achieved while meeting the overall drag target.
Journal Article

3D CFD Simulation of Hydraulic Test of an Engine Coolant System

2022-03-29
2022-01-0207
Designing an efficient vehicle coolant system depends on meeting target coolant flow rate to different components with minimum energy consumption by coolant pump. The flow resistance across different components and hoses dictates the flow supplied to that branch which can affect the effectiveness of the coolant system. Hydraulic tests are conducted to understand the system design for component flow delivery and pressure drops and assess necessary changes to better distribute the coolant flow from the pump. The current study highlights the ability of a complete 3D Computational Fluid Dynamics (CFD) simulation to effectively mimic a hydraulic test. The coolant circuit modeled in this simulation consists of an engine water-jacket, a thermostat valve, bypass valve, a coolant pump, a radiator, and flow path to certain auxiliary components like turbo charger, rear transmission oil cooler etc.
Technical Paper

A 2-D Computational Model Describing the Heat Transfer, Reaction Kinetics and Regeneration Characteristics of a Ceramic Diesel Particulate Trap

1998-02-23
980546
A 2-D CFD model was developed to describe the heat transfer, and reaction kinetics in a honeycomb structured ceramic diesel particulate trap. This model describes the steady state as well as the transient behavior of the flow and heat transfer during the trap regeneration processes. The trap temperature profile was determined by numerically solving the 2-D unsteady energy equation including the convective, heat conduction and viscous dissipation terms. The convective terms were based on a 2-D analytical flow field solution derived from the conservation of mass and momentum equations (Opris, 1997). The reaction kinetics were described using a discretized first order Arrhenius function. The 2-D term describing the reaction kinetics and particulate matter conservation of mass was added to the energy equation as a source term in order to represent the particulate matter oxidation. The filtration model describes the particulate matter accumulation in the trap.
Technical Paper

A CAE Methodology to Simulate Testing a Rearward Facing Infant Seat during FMVSS 208 Low Risk Deployment

2007-04-16
2007-01-1770
The Federal Motor Vehicle Safety Standard or FMVSS 208 requires passenger cars, multi-purpose vehicles, trucks with less than unloaded vehicle weight of 2,495 kg either to have an automatic suppression feature or to pass the injury criteria specified under low risk deployment test requirement for a 1 year old dummy in rearward and forward facing restraints as well as a forward facing 3 and 6 year old dummy. A convertible child seat was installed in a sub-system test buck representing a passenger car environment with a one-year- old dummy in it at the passenger side seat and a passenger side airbag was deployed toward the convertible child seat. A MADYMO model was built to represent the test scenario and the model was correlated and validated to the results from the experiment.
Technical Paper

A CFD Validation Study for Automotive Aerodynamics

2000-03-06
2000-01-0129
A study was conducted using Ford's nine standard CFD calibration models as described in SAE paper 940323. The models are identical from the B-pillar forward but have different back end configurations. These models were created for the purpose of evaluating the effect of back end geometry variations on aerodynamic lift and drag. Detailed experimental data is available for each model in the form of surface pressure data, surface flow visualization, and wake flow field measurements in addition to aerodynamic lift and drag values. This data is extremely useful in analyzing the accuracy of the numerical simulations. The objective of this study was to determine the capability of a digital physics based commercial CFD code, PowerFLOW ® to accurately simulate the physics of the flow field around the car-like benchmark shapes.
Technical Paper

A Comparison of DES Methods for the DrivAer Generic Realistic Car Model on a Wall Resolved and a Wall Function Mesh

2022-03-29
2022-01-0900
The DrivAer realistic generic car model is now established as one of the benchmark geometries to assess the aerodynamic flow field characteristics associated with passenger vehicles. Since its introduction in 2012, the database of experimental studies has grown and provides excellent validation opportunities for analytical methods. This paper compares Computational Fluid Dynamics (CFD) simulations for integral forces, surface pressure distribution and velocity flow fields for the DrivAer model in the notchback configuration. Transient CFD data are obtained by employing hybrid Reynolds Averaged Navier-Stokes (RANS) and Large Eddy Simulation methods (Detached Eddy Simulation - DES) using the finite volume solvers Simcenter Star-CCM+ and the openFOAM based flow solver IconCFD. Computational results are calculated using Wall Resolved Meshes (WRM), where y+ < 1, and Wall Function Meshes (WFM), where 30 < y+ < 100.
Technical Paper

A Computational Investigation of the Effects of Swirl Ratio and Injection Pressure on Mixture Preparation and Wall Heat Transfer in a Light-Duty Diesel Engine

2013-04-08
2013-01-1105
In a recent study, quantitative measurements were presented of in-cylinder spatial distributions of mixture equivalence ratio in a single-cylinder light-duty optical diesel engine, operated with a non-reactive mixture at conditions similar to an early injection low-temperature combustion mode. In the experiments a planar laser-induced fluorescence (PLIF) methodology was used to obtain local mixture equivalence ratio values based on a diesel fuel surrogate (75% n-heptane, 25% iso-octane), with a small fraction of toluene as fluorescing tracer (0.5% by mass). Significant changes in the mixture's structure and composition at the walls were observed due to increased charge motion at high swirl and injection pressure levels. This suggested a non-negligible impact on wall heat transfer and, ultimately, on efficiency and engine-out emissions.
Technical Paper

A Computational and Experimental Analysis of the Flow Around a Blunt-Base Vehicle

2005-11-01
2005-01-3626
This paper describes the results of experiments that were performed using a Ground Research Vehicle (GRV) at the National Aeronautics and Space Administration's (NASA) Dryden Flight Research Center in Edwards, CA and a comparison with computational results. The GRV is a modified 1984 General Motors (GMC) van and measures 40 feet long and 9 feet high, with a base area of 83 by 83, and it weighs 10260 lbs and holds a crew of up to three. Air data is measured from a nose-boom, 2 global positioning (GPS) units, and an absolute Honeywell Pressure Transducer with 4 Electronic Signal Processor (ESP) scanners and 64 surface pressure ports. This allows for detailed measurements of the surface pressure profiles around the vehicle. The total vehicle drag is estimated from coast-down tests, while the pressure component of the drag force may be calculated by integrating the pressure profiles on the front and base of the vehicle.
Technical Paper

A Detailed Aerodynamics Investigation of Three Variants of the Generic Truck Utility

2021-04-06
2021-01-0950
Three pickup truck variants of the Generic Truck Utility (GTU) are evaluated and compared using wind tunnel test data and computational fluid dynamics (CFD) simulations. The configurations analyzed are the short cab/long box, medium cab/medium box, and long cab/short box geometries, which all share a common vehicle length and wheelbase. Both cab and box length are known to influence the total bluff body drag through the interaction of the cab wake in the pickup box with the total vehicle wake, and the GTU provides an excellent test box to investigate the details of these interactions. Experimental testing was conducted at the WindShear wind tunnel on a full-scale GTU model, while transient CFD simulations were carried out with IconCFD®, an open-source based solver. Experimental and CFD results are used to describe the general flow field around the vehicle, and a comparison is made with the wind tunnel integral force data as well as centerline pressure tap data.
Technical Paper

A Mechanical Energy Control Volume Approach Applied to CFD Simulations of Road Vehicles

2024-04-09
2024-01-2524
This paper presents a mechanical energy control volume analysis for incompressible flow around road vehicles using results from Detached Eddy Simulation Computational Fluid Dynamics calculations. The control volume approach equates the rate of work done by surface forces of the vehicle to (i) the rate of work and kinetic energy flux at the control volume boundaries (particularly in the vehicle wake) and (ii) the rate of energy loss in the domain. At the downstream control volume boundary, the wake terms can be divided into lift-induced and profile drag terms. The rate of energy loss in the domain can be used as a volumetric analog for drag (drag counts/m3, when normalized). This allows for a quantitative break down of the contributions of different flow features/regions to the overall drag force.
Technical Paper

A Numerical Study for the Effect of Liquid Film on Soot Formation of Impinged Spray Combustion

2021-04-06
2021-01-0543
Spray impingement is an important phenomenon that introduces turbulence into the spray that promotes fuel vaporization, air entrainment and flame propagation. However, liquid impingement on the surface leads to wall-wetting and film deposition. The film region is a fuel-rich zone and it has potentials to produce higher emission. Film deposition in a non-reacting spray was studied previously but not in a reacting spray. In the current study, the film deposition of a reacting diesel spray was studied through computational fluid dynamic (CFD) simulations under a variety of ambient temperatures, gas compositions and impinging distances. Characteristics of film mass, distribution of thickness, soot formation and temperature distributions were investigated. Simulation results showed that under the same impinging distance, higher ambient temperature reduced film mass but showed the same liquid film pattern.
Technical Paper

A Segregated Thermal Analysis Method for Liquid-Cooled Traction Batteries

2017-03-28
2017-01-0629
Thermal modeling of liquid-cooled vehicle traction battery assemblies using Computational Fluid Dynamics (CFD) usually involves large models to accurately resolve small cooling channel details, and intensive computation to simulate drive-cycle transient solutions. This paper proposes a segregated method to divide the system into three parts: the cells, the cold plate and the interface between them. Each of the three parts can be separated and thermally characterized and then combined to predict the overall system thermal behavior for both steady-state and transient operating conditions. The method largely simplifies battery thermal analysis to overcome the limitations of using large 3D CFD models especially for pack level dynamic drive cycle simulations.
Technical Paper

A Three-Dimensional Design Tool for Crescent Oil Pumps

2008-04-14
2008-01-0003
Due to complexities of interaction among gears and crescent-shaped island, a crescent oil pump is one of the most difficult auto components to model using three dimensional Computational Fluid Dynamics(CFD) method. This paper will present a novel approach to address the challenges inherent in crescent oil pump modeling. The new approach is incorporated into the commercial pump design tool PumpLinx from Simerics, Inc.. The new method is applied to simulate a production crescent oil pump with inlet/outlet ports, inner/outer gears, irregular shaped crescent island and tip leakages. The pump performance curve, cavitation effects and pressure ripples are studied using this tool and will be presented in this paper. The results from the simulations are compared to the experiment data with excellent agreement. The present study shows that the proposed computational model is very accurate and robust and can be used as a reliable crescent pump design tool.
Technical Paper

Advanced Predictive Diesel Combustion Simulation Using Turbulence Model and Stochastic Reactor Model

2017-03-28
2017-01-0516
Today numerical models are a major part of the diesel engine development. They are applied during several stages of the development process to perform extensive parameter studies and to investigate flow and combustion phenomena in detail. The models are divided by complexity and computational costs since one has to decide what the best choice for the task is. 0D models are suitable for problems with large parameter spaces and multiple operating points, e.g. engine map simulation and parameter sweeps. Therefore, it is necessary to incorporate physical models to improve the predictive capability of these models. This work focuses on turbulence and mixing modeling within a 0D direct injection stochastic reactor model. The model is based on a probability density function approach and incorporates submodels for direct fuel injection, vaporization, heat transfer, turbulent mixing and detailed chemistry.
Technical Paper

Advantages of Adaptive Wall Wind Tunnel Technology: A CFD Study for Testing Open Wheel Race Cars

2007-04-16
2007-01-1048
The primary advantage of an Adaptive Wall wind tunnel is that the test section walls and ceiling are contoured to closely approximate the ‘open road' flowfield around the test vehicle. This reproduction of the open road flowfield then results in aerodynamic forces and moments on the test vehicle that are consistent with actual open road forces and moments. Aerodynamic data measured in the adaptive wall test section do not require blockage corrections for adjusting the data to open road results. Extensive full scale experiments, published scale model studies, and Computational Fluid Dynamics (CFD) studies have verified the simulation capability of adaptive wall technology. For the CFD study described here, high-downforce, open-wheel race cars were studied. The numerical simulations with a race car in an Adaptive Wall Test Section (AWTS) wind tunnel are compared with simulations in ‘free air' condition and in a closed wall test section.
Journal Article

Aerodynamic Investigation of Cooling Drag of a Production Sedan Part 2: CFD Results

2017-03-28
2017-01-1528
Cooling drag is a metric that measures the influence of air flow travelling through the open grille of a ground vehicle on overall vehicle drag, both internally (engine air flow) and externally (interference air flow). With the interference effects considered, a vehicles cooling drag can be influenced by various air flow fields around the vehicle, not just the air flow directly entering or leaving the engine bay. For this reason, computational fluid dynamics (CFD) simulations are particularly difficult. With insights gained from a previously conducted set of experimental studies, a CFD validation effort was undergone to understand which air flow field characteristics contribute to CFD/test discrepancies. A Lattice-Boltzmann Large Eddy Simulation (LES) method was used to validate several test points. Comparison using integral force values, surface pressures, and cooling pack air mass flows was presented.
Journal Article

An Efficient Level-Set Flame Propagation Model for Hybrid Unstructured Grids Using the G-Equation

2016-04-05
2016-01-0582
Computational fluid dynamics of gas-fueled large-bore spark ignition engines with pre-chamber ignition can speed up the design process of these engines provided that 1) the reliability of the results is not affected by poor meshing and 2) the time cost of the meshing process does not negatively compensate for the advantages of running a computer simulation. In this work a flame propagation model that runs with arbitrary hybrid meshes was developed and coupled with the KIVA4-MHI CFD solver, in order to address these aims. The solver follows the G-Equation level-set method for turbulent flame propagation by Tan and Reitz, and employs improved numerics to handle meshes featuring different cell types such as hexahedra, tetrahedra, square pyramids and triangular prisms. Detailed reaction kinetics from the SpeedCHEM solver are used to compute the non-equilibrium composition evolution downstream and upstream of the flame surface, where chemical equilibrium is instead assumed.
Journal Article

An Experimental and Numerical Study of Diesel Spray Impingement on a Flat Plate

2017-03-28
2017-01-0854
Combustion systems with advanced injection strategies have been extensively studied, but there still exists a significant fundamental knowledge gap on fuel spray interactions with the piston surface and chamber walls. This paper is meant to provide detailed data on spray-wall impingement physics and support the spray-wall model development. The experimental work of spray-wall impingement with non-vaporizing spray characterization, was carried out in a high pressure-temperature constant-volume combustion vessel. The simultaneous Mie scattering of liquid spray and schlieren of liquid and vapor spray were carried out. Diesel fuel was injected at a pressure of 1500 bar into ambient gas at a density of 22.8 kg/m3 with isothermal conditions (fuel, ambient, and plate temperatures of 423 K). A Lagrangian-Eulerian modeling approach was employed to characterize the spray-gas and spray-wall interactions in the CONVERGETM framework by means of a Reynolds-Averaged Navier-Stokes (RANS) formulation.
Technical Paper

An Extensive Validation of an Open Source Based Solution for Automobile External Aerodynamics

2017-03-28
2017-01-1524
The number of computational fluid dynamics (CFD) simulations performed during the vehicle aerodynamic development process continues to expand at a rapid rate. One key contributor to this trend is the number of analytically based designed experiments performed to support vehicle aerodynamic shape development. A second contributor is the number of aerodynamic optimization studies performed for vehicle exterior components such as mirrors, underbody shields, spoilers, etc. A third contributor is the increasing number of “what if” exploratory studies performed early in the design process when the design is relatively fluid. Licensing costs for commercial CFD solutions can become a significant constraint as the number of simulations expands.
X