Refine Your Search

Topic

Search Results

Viewing 1 to 12 of 12
Technical Paper

A Computational Study of Crystal Orientation Effects on High Strain Rate Performance of Single Crystal Copper

2019-04-02
2019-01-0714
This paper presents a computational study to investigate effects of crystal orientations on plasticity and damage of copper crystal at atomic scale. In the present study, a single crystal copper model was created as a target, which was struck and penetrated by a single crystal nickel. Three orientations, single slip system [1 0 1, 1 2 -1, -1 1 1], double slip system [1 1 2, 1 1 0, 1 1 -1], and octal slip system [1 0 0, 0 1 0, 0 0 1], were applied to the copper crystal. Their effects on plasticity and damage behavior of the single crystal copper were studied and compared using molecular dynamics simulations. Modified Embedded Atom Method potentials were applied to determine the pair interactions between the copper and nickel atoms.
Technical Paper

A Multiscale Study of Single Crystal Copper Plate with Octal Orientation Struck by a Nickel Projectile

2018-04-03
2018-01-1210
A common interaction between a penetrator and a target has been the use of copper and nickel materials. However, a multiscale analysis has not been performed on such a system. Compared to steels, aluminum alloys, titanium alloys and other metallic materials, a description of the mechanical behavior of pure ductile metals such as Cu struck by a penetrator comprises nickel under the high strain rate at different multiscale still remains unknown. In this research, Modified Embedded Atom Method (MEAM) Potential is utilized to study this system and the molecular dynamics simulation is employed in order to provide structure property evolution information for plasticity and shearing mechanisms.
Technical Paper

A Study in Driver Performance: Alternative Human-Vehicle Interface for Brake Actuation

2006-04-03
2006-01-1060
This study examines the performance and subject acceptance level of a hand-operated brake actuator. Using a fixed-base vehicle simulator, data for driver reaction time, stopping time, distance, deceleration, customer acceptance and mental workload were collected. Data for three prototype hand-operated brake actuators and traditional foot-operated brake were compared. An additional test, designed to evaluate anthropometrics, sensitivity, and comfort was performed during training. A user preference survey to determine handbrake acceptance was given to subjects after completing the driving test in the simulator. In certain trials, participants were given the choice of handbrake or footbrake for an unexpected stop condition. When placed into an unexpected braking situation, subjects showed faster brake-application times for operating the hand-operated brake, indicating potential for reduced braking distance.
Technical Paper

Belt Wet Friction and Noise Study

2009-06-15
2009-01-1979
Serpentine belt system has been widely used to drive automotive accessories like power steering pump, alternator, and A/C compressor from a crankshaft pulley. Overload under severe conditions can lead to excessive slippage in the belt pulley interface in poorly designed accessory systems. This can lead to undesirable noise that increases warranty cost substantially. The mechanisms and data of these tribology performance, noise features and system response are of utmost interest to the accessory drive designers. As accessories belt systems are usually used in ambient condition, the presence of water on belt is unavoidable under the raining weather conditions. The presence of water in interface induces larger slippage as the water film in interface changes the friction mechanisms in rubber belt-pulley interface from coulomb friction to friction with mixed lubrication that has negative slope of coefficient of friction (cof) - velocity.
Technical Paper

Causes of Weight Reduction Effects of Material Substitution on Constant Stiffness Components

2002-03-04
2002-01-1291
The substitution of lightweight materials, such as aluminum or magnesium alloys, to produce lightweight car bodies, has been the subject of intensive research in resent years. It has been established that an aluminum body is lighter than a steel body for constant stiffness. The causes of this weight reduction have not been established. In particular, since the specific modulus (modulus of elasticity/density) of steel, aluminum and magnesium are nearly identical, there is no easy answer for their ability to reduce weight. In this paper, it is shown that there are stress concentrations in thin walled structures, which are dependent on the thickness of the material. These stress concentrations appear in joints and other parts with complex geometry and loading conditions. For example, the flanges on a curved beam in flexure have an effective (load bearing) width, which increases as the material is thickened.
Technical Paper

Developing a Model Predictive Control-Based Algorithm for Energy Management System of the Catenary-Based Electric Truck

2016-10-17
2016-01-2359
Although the cost-saving and good environmental impacts are the benefits that make Electric Vehicles (EVs) popular, these advantages are significantly influenced by the cost of battery replacement over the vehicle lifetime. After several charging and discharging cycles, the battery is subjected to energy and power degradation which affects the performance and efficiency of the vehicle. In addition to battery replacement cost, the electricity cost being paid by drivers is another key factor in selecting the EVs. An Energy Management System (EMS) with Model Predictive Control-based (MPC) algorithm is presented for a specific case of heavy-duty EV. Such EV draws its energy from the grid via catenary in addition to the on-board battery. Dynamic model of the vehicle will be defined by State Space Equations (SSE).
Technical Paper

Development of A Dynamic Modeling Framework to Predict Instantaneous Status of Towing Vehicle Systems

2017-03-28
2017-01-1588
A dynamic modeling framework was established to predict status (position, displacement, velocity, acceleration, and shape) of a towed vehicle system with different driver inputs. This framework consists of three components: (1) a state space model to decide position and velocity for the vehicle system based on Newton’s second law; (2) an angular acceleration transferring model, which leads to a hypothesis that the each towed unit follows the same path as the towing vehicle; and (3) a polygon model to draw instantaneous polygons to envelop the entire system at any time point. Input parameters of this model include initial conditions of the system, real-time locations of a reference point (e.g. front center of the towing vehicle) that can be determined from a beacon and radar system, and instantaneous accelerations of this system, which come from driver maneuvers (accelerating, braking, steering, etc.) can be read from a data acquisition system installed on the towing vehicle.
Journal Article

Elevated Temperature Modal Response and Delamination Detection in Carbon-Epoxy Beams

2016-12-21
2016-01-9082
Polymer matrix composites are increasingly adopted in aerospace and automotive industries due to their many attributes, such as their high strength to weight ratio, tailorability, and high fatigue and durability performance. However, these materials also have complex damage and failure mechanisms, such as delaminations, which can severely degrade their strength and fatigue performance. To effectively and safely use composite materials in primary structures, it is essential to assess composite damage response for development of accurate predictive models. Therefore, this study focuses on determining the response of damaged and undamaged carbon epoxy beams subjected to vibration loadings at elevated temperatures. The Hilbert-Huang Transform (HHT) technique is used to analyze the beams’ modal response. The HHT shows potential in identifying the nonlinear damaged response of the beams.
Technical Paper

Investigation of a Stall Deterrent System Utilizing an Acoustic Stall Sensor

1977-02-01
770473
A simple rugged acoustic stall sensor which has an output proportional to angle of attack near wing stall has been evaluated on a Cessna 319 aircraft. A sensor position has been found on the wing where the sensor output is only slightly affected by engine power level, yaw angle, flap position and wing roughness. The NASA LRC General Aviation Simulator has been used to evaluate the acoustic sensor output as a control signal for active stall deterrent systems. It has been found that a simple control algorithm is sufficient for stall deterrence.
Technical Paper

Microstructure-Sensitive Fatigue Modeling of an Extruded AM30 Magnesium Alloy

2013-04-08
2013-01-0980
We characterize the cyclic behavior of an AM30 extruded magnesium alloy. The micromechanisms of cyclic damage were studied by means of strain controlled experiments in both the extruded and transverse directions. A scanning electron microscope (SEM) analysis of the microstructure revealed that second phase particles were present in the Mg alloy that nucleated the cracks. However, crack initiation sites were observed to occur due to profuse twinning. Low cycle fatigue parameters were determined, and a microstructure-sensitive MultiStage Fatigue (MSF) model, which is able to capture mechanical and microstructure properties, was implemented to predict fatigue behavior and failure.
Technical Paper

Transverse Vibration of a Composite Shaft

2009-05-19
2009-01-2066
The advantages of having higher stiffness to weight ratio and strength to weigh ratio that composite materials have resulted in an increased interest in them. In automotive engineering, the weight savings has positive impacts on other attributes like fuel economy and possible noise, vibration and harshness (NVH). The driveline of an automotive system can be a target for possible use of composite materials. The design of the driveshaft of an automotive system is primarily driven by its natural frequency. This paper presents an exact solution for the vibration of a composite driveshaft with intermediate joints. The joint is modeled as a frictionless internal hinge. The Euler-Bernoulli beam theory is used. Lumped masses are placed on each side of the joint to represent the joint mass. Equations of motion are developed using the appropriate boundary conditions and then solved exactly.
Technical Paper

Vibration Response and Damage Detection of Carbon/ Epoxy Beams at Elevated Temperatures using the Hilbert-Huang Transform

2015-09-15
2015-01-2586
The vibration response from undamaged and damaged polymer matrix composite beams at elevated temperatures is analyzed using the Hilbert-Huang Transform (HHT) technique. The HHT shows potential in identifying the nonlinear damaged response of the beams. Using empirical mode decomposition to separate superposed modes of signals, several intrinsic mode functions can be determined which can reveal more information about complex nonlinear signals than traditional data analysis techniques such as the Fourier Transform. The composite beams are fabricated from an out-of-autoclave uniaxial carbon/epoxy prepreg (CYCOM™-5320-1/T650). Delamination damage in the composite layups is introduced by insertion of mold release wax films during fabrication. A shaker-table fixture was used for the vibration testing of all beams in a vertical cantilever configuration. High temperature piezoelectric accelerometers were used to obtain the vibration data for a frequency range of 1-61 Hz.
X