Refine Your Search

Topic

Author

Search Results

Technical Paper

A New Hydraulic Coupling Unit (HCU) for 4WD Vehicles

1989-02-01
890527
This year (1989) Mitsubishi Motors Corp. introduced, on some models, a newly-developed Hydraulic Coupling Uint (HCU), by which 2WD vehicles can be converted into 4WD ones in the same way as done by a viscous coupling (VC). This HCU is similar in the configuration to a vane pump: the oil discharge is returned to the suction chamber through a number of orifices. The rotor and cam ring (housing) are respectively connected to the two shafts; either of the one with the front wheels and the other with the rear wheels. Accordingly, it works as a slip-sensitive differential like a VC while it has a merit of progressive and parabolic torque-response characteristic, which offers stronger traction and acceleration capability and also minimizes tight-corner braking. This paper discusses primarily the configurations, functions and test results of the HCU and also presents an overview on further development possibilities of the 4WD system.
Technical Paper

A New Oxygen Storage Componented Oxygen Sensor for the Emission Reductions of the Three-Way Catalyst System

1990-10-01
902120
A new prototype oxygen storage componented oxygen sensor has been developed which shows significant emission reductions of a 3-way catalyst system. This sensor is composed of ceria, as an oxygen storage component and supported pellets as a buffer layer surrounding the protective coating of the sensor element. This sensor offers a more rapid response than conventional ones under lean and rich fuel mixture excursions, which is caused by CO or O2 electrode poisoning.
Technical Paper

A Study of Friction Reduction by ‘Soft Skirt’ Piston

2011-08-30
2011-01-2120
To reduce friction is required to improve engine fuel economy. This study aimed to reduce piston skirt friction, which is a major factor in engine friction. ‘Soft skirt’ is a trendy item in recent gasoline engines, which can improve skirt sliding condition by larger deformation when the piston is pressed to the liner. The effect is confirmed by friction measurement and oil film observation, using prototype pistons. And also one major factor of the effect is clarified that not only side force but also cylinder pressure causes effective deformation of the skirt to create thick oil film at early combustion stroke.
Technical Paper

Accuracy of A/F Calculation from Exhaust Gas Composition of SI Engines

1989-09-01
891971
The accuracy of real-time A/F measurement at engine test benches has been improved with a modified equation to calculate A/F from exhaust gas composition. In addition to CO, CO2, total hydrocarbon (THC) and O2, the proposed equation includes NO and NO2 concentration as variables. In an attempt to improve the accuracy of the assumed constants in the equation, experiments have been conducted using automotive exhaust H2O and H2 analyzers. The accuracy of the proposed equation was proven through experiments and it was also found useful for precise evaluation of three-way catalyst or oxygen sensor characteristics.
Technical Paper

Application of Micro-Alloyed Steel to Diesel Engine Parts for Trucks and Buses

1989-02-01
890137
Applying micro-alloyed steel as a cost-effective method of forging engine parts eliminates quench and temper processes and saves energy. We have expanded this application to timing gears and crankshafts by changing the connecting rod material to carbon steel and vanadium, applied at the outset. Then, micro-alloyed steel treated with a soft nitriding process was used. Our recent studies have been focused on materials which exhibit both higher tensile strength and better machinability. This paper describes the results of applying different types of micro-alloyed steel to those engine parts.
Technical Paper

Ceramic Rocker Arm Insert for Internal Combustion Engines

1986-03-01
860397
The adoption of the diesel engine EGR systems, and increased uses of alcohol in spark ignited engines require wear resistant and low maintenance valve trains. Silicon nitride ceramic inserts were pressureless-sintered and successfully die-cast in rocker arms contacting the overhead cams in the valve trains. As fired, the insert sliding surface was fine and precise, eliminating any further processing. The comosite structure was machined with the sliding surface as a reference plane. Beside inherent high wear resistance, these lighter inserts reduced inertial forces of the trains and the torque required to drive the cams. The hard, brittle ceramics and a softer, more elastic aluminum alloy made the structure more durable and reliable. The process of development includes characterization, screening, manufacturing and quality control of the materials, and determination of wear resistance and reliability for this new structure.
Technical Paper

Concept of Lean Combustion by Barrel-Stratification

1992-02-01
920678
A novel leanburn concept, ‘Barrel-Stratification’ is proposed. Fuel is introduced into the cylinder through one of the intake ports of a dual-intake-valve engine of which the tumbling air motion is intensified by the sophisticated intake port design. Because the velocity component in the direction parallel to the axis of tumble is small, charge stratification realized during the intake stroke is maintained until the end of the compression stroke. By the effects of charge stratification and the turbulence enhancement by tumble, stable combustion is realized even at extremely lean conditions. The concept was verified by flow field analysis applying a multi-color laser sheet technique and the flame structure analysis employing the blue-end image intensification realized by the interference mirror and the short delay phosphor.
Technical Paper

Contribution of Fuel Transport Lag and Statistical Perturbation in Combustion to Oscillation of SI Engine Speed at Idle

1987-02-01
870545
Periodic oscillations of the speed of SI engine with MPI system at idle observed in the steady state and in the converging process after the inditial increase of load were investigated. These non-steady phenomena are the self-excitations of the closed-loop system induced by the lag factors inherent to the system such as the manifold charging delay and the fuel metering and transport lag and by the nonlinear factors such as the sensitivity of the torque to the equivalence ratio. But, even in the cases where the lags and the nonlinearity are insufficient, continuous oscillations with large amplitude are observed in the actual engine. They can be explained by introducing the concept of external perturbation induced by the combustion fluctuation. Disturbance prevents the phase lag in the system from converging, resulting in the continuation of oscillation.
Technical Paper

Development History of the Doubles Combinations in Japan

1983-11-07
830894
This is to introduce a development history of Doubles-Combinations in Japan and a several important technological points briefly. We understand that our wide promotion of these development activities are strongly supported by the General/Technical Committee members. And totally 10 - million kirometers practical operation data included by 3 - famous Japanese fleet owners, these must be very much useful and valuable for anyone interesting those of Trailer-Combination technologies.
Technical Paper

Development of Advanced Emission-Control Technologies for Gasoline Direct-Injection Engines

2001-03-05
2001-01-0254
An extensive effort has been made, at Mitsubishi Motors, in the technology field of new catalysts and of the catalyst reaction control for the purpose of further improvement of the emission control with the GDI engines [1-2]. A new NOx-trap catalyst has been developed to satisfy the required higher catalyst performance under high-temperature condition. The new catalyst contains potassium (K) of excellent NOx-storage capacity under high-temperature region in the catalytic atmosphere, and to retain K stability zeolite is mixed in the catalyst layer as well as the substrate is coated with silica (SiO2). This new catalyst has been proven of the improved NOx conversion efficiency, and solved the long-pending problems particularly those experienced under high-temperature operation.
Technical Paper

Development of Diesel Particulate Trap Oxidizer System

1986-03-01
860294
A particulate trap oxidizer system to reduce diesel particulate emissions has been developed. This system consists of a ceramic foam filter with an optimum volume, shape, and mesh number in terms of collection efficiency, pressure loss and particulate blow-off; a catalyst with a low activated-temperature for particulate incineration and with no sulfate formation during highway driving; and a regeneration system which prevents particulate overcollection during long-term continuous low-load/low-speed driving where it is difficult to achieve self-burning of particulates with a catalytic reaction. This paper describes the development of the particulate trap oxidizer system with these technologies and presents the results of practicability evaluations and 50,000-mile vehicle durability tests.
Technical Paper

Development of Hard Sintered Tappet and New Testing Method

1995-02-01
950389
We have developed a tappet with a cam lobe contacting tip made of a hard sintered material whose base material is cobalt, which adheres less to the steel of camshafts, and which also contains fine particles of tungsten carbide and chrome carbide. We have established a new evaluation method to access wear resistance performance of the tappet. It enables us to measure directly the friction force generated between the cam lobe and tappet and to evaluate anti-scuffing performance with high accuracy because we can clarify the time, load and cam angle at which scuffing occures.
Technical Paper

Development of High Performance Heavy-Duty Diesel Engine Oil to Extend Oil Drain Intervals: 5W30 Fully Synthetic Oil Containing MoDTC

2000-06-19
2000-01-1992
In this study, the oxidation stability, soot dispersancy, antiwear performance, and friction-reducing capability of friction modifiers (FMs) were evaluated, and an SAE 5W-30 fully synthetic oil with MoDTC type FMs was developed for heavy-duty diesel engines. In several engine tests, it was confirmed that the developed oil can double the oil drain interval in comparison with API CD SAE 30, even when EGR is applied, and improves the fuel efficiency.
Technical Paper

Development of Mitsubishi Flexible Fuel Vehicle

1991-02-01
910861
A flexible fuel vehicle (FFV) was evaluated through various tests for its potential as an alternative to the conventional gasoline vehicle. This paper presents the systems incorporated in the FFV and the test results. 50,000 mile emission durability tests were also performed and the potential of the FFV as a “Low Emission Vehicle” was assessed. As the result of extensive engineering work, we successfully developed a Galant FFV which exhibits very good durability and reliability. The emission control system which we have developed demonstrated that the vehicle has a good potential to comply with the California formaldehyde emission standard of 15 mg/mile. However, due to the large portion of unburnt methanol in the tail-pipe emissions, FFVs will have more difficulty than gasoline vehicles in meeting non-methane organic gas (NMOG) standards applicable to “Low Emission Vehicles”.
Technical Paper

Development of a New Combustion System (MCA-JET) in Gasoline Engine

1978-02-01
780007
A new combustion system - called MCA-JET- has been developed to improve combustion under the low speed, low load conditions typical of urban driving. Engines with this new system incorporate a special “jet valve”, in addition to the inlet and exhaust valves of the conventional combustion chamber, which directs air or a super-lean mixture towards the spark plug, and induces a strong swirling flow in the cylinder. This swirl persists during the compression and expansion processes, moves the mixture spirally and helps the flame to propagate. As a result, the combustion of lean mixtures, including those with exhaust gas recirculation, can be carried out rapidly and thus the fuel economy improved.
Technical Paper

Development of a New Multi-Mode Variable Valve Timing Engine

1993-03-01
930878
The 4-stroke SI engine offers better performance if its valve events can be varied depending on the operating conditions. Some engines in production are therefore incorporated with variable valve timing (VVT) mechanisms. All of such mechanisms available today however are for two-mode change-over between low-and high-speed operations. To achieve even better output and fuel economy, a new multi-mode VVT mechanism has been developed, featured by a unique hydraulic device for three-mode change-over as follows: Deactivate both intake and exhaust valves Select low-speed cam with moderate lifts and short durations Select high-speed cam with high lifts and long durations This mechanism enables shutting off unnecessary cylinders during low-speed cruise, or select optimum valve events during WOT acceleration over the entire engine speed range.
Technical Paper

Development of the NOx Adsorber Catalyst for Use with High-Temperature Condition

2001-03-05
2001-01-1298
NOx adsorber has already been used for the after-treatment system of series production vehicle installed with a lean burn or direct injection engine [1,2,3]. In order to improve NOx adsorbability at high temperatures, many researchers have recently been trying an addition of potassium (K) as well as other conventional NOx adsorbents. Potassium, however, reacts easily with the cordierite honeycomb substrate at high temperatures, and not only causes a loss in NOx adsorbability but also damages the substrate. Three new technologies have been proposed in consideration of the above circumstances. First, a new concept of K-capture is applied in washcoat design, mixed with zeolite, to improve thermal stability of K and to keep high NOx conversion efficiency, under high temperatures, of NOx adsorber catalyst. Second, another new technology, pre-coating silica over the boundary of a substrate and washcoat, is proposed to prevent the reaction between potassium and cordierite.
Technical Paper

EGR Technologies for a Turbocharged and Intercooled Heavy-Duty Diesel Engine

1997-02-24
970340
In this study three EGR methods were applied to a 12 liter turbocharged and intercooled Dl diesel engine, and the exhaust emission and fuel consumption characteristics were compared. One method is the Low Pressure Route system, in which the EGR is taken from down stream of the turbine to the compressor entrance. The other two systems are variations of the High Pressure Route system, in which the EGR is taken from the exhaust manifold to the intake manifold. One of the two High Pressure Route EGR systems is with back pressure valve located at downstream of the turbine and the other uses a variable geometry(VG) turbocharger. It was found that the High Pressure Route EGR system using VG turbocharger was the most effective and practical. With this method the EGR area could be enlarged and NOx reduced by 22% without increase in smoke or fuel consumption while maintaining an adequate excess air ratio.
Technical Paper

Effect of Turbulence in Intake Port of MPI Engine on Fuel Transport Phenomena and Nonuniformity of Fuel/Air Mixing in Cylinder

1990-02-01
900162
Three zone mixture preparation model, assuming that fuel and air are distributed in three separate zones, fuel air and mixture zone, was proposed. Air Utilization Efficiency derived from the model was used to evaluate the mixing nonuniformity. Effect of the large scale nonisotropic turbulence downstream of the dimple or edge in the intake port of MPI engine on the convective mass transfer from fuel film was clarified by the proposed nondimensional index, Local Sherwood Number. It was found that when the fuel is injected toward the wall where large scale turbulence exists, almost all of the fuel is seeded in the air passing the region at the beginning of the intake process, resulting in the time-resolved nonuniformity of the mixture strength at the intake valve. Using the Air Utilization Efficiency, it was elucidated that time-resolved mixing nonuniformity at intake valves induces spatially nonuniform fuel/air distribution in the cylinder.
Technical Paper

Effects of Various Methods for Improving Vehicle Startability and Transient Response of Turbocharged Diesel Trucks

1992-02-01
920044
To improve vehicle startability and transient response of turbocharged diesel trucks, their phenomena have been investigated and analyzed in detail and various supercharging systems have been developed and installed on a truck for comparison of their characteristics. The systems considered were ceramic, variable geometry, variable entry,and air-assisted turbochargers and a combined supercharging system. The variable entry turbocharger has two turbine scrolls with different nozzle areas and two switching valves to get three different turbine flow capacities. The combined supercharging system consists of a mechanical supercharger and a turbocharger. These are linked in series. Both work in a low engine speed range, and the turbocharger only works in middle and high engine speed ranges. Among these systems, the combined supercharging system is the best for improving both vehicle startability and transient response of a truck.
X