Refine Your Search

Topic

Author

Search Results

Technical Paper

A Diesel Oxidation Catalyst for Exhaust Emissions Reduction

1993-11-01
932958
The authors used a mass spectrometer to determine an SOF reduction mechanism of a diesel oxidation catalyst. The results indicate that SOF reduction lies in the catalytic conversion of high molecular organic matter to low molecular organic matter. And unregulated emissions are also reduced through this conversion. It is also found that the SOF reduction performance is highly dependent up on the condition of the wash coat. There is some limitation to improving diesel oxidation catalyst performance because of the sulfur content found in diesel fuel. Finally, the authors have determined what we think are the specifications of the presently best catalytic converter.
Technical Paper

A New Oxygen Storage Componented Oxygen Sensor for the Emission Reductions of the Three-Way Catalyst System

1990-10-01
902120
A new prototype oxygen storage componented oxygen sensor has been developed which shows significant emission reductions of a 3-way catalyst system. This sensor is composed of ceria, as an oxygen storage component and supported pellets as a buffer layer surrounding the protective coating of the sensor element. This sensor offers a more rapid response than conventional ones under lean and rich fuel mixture excursions, which is caused by CO or O2 electrode poisoning.
Technical Paper

A Study of the Durability of Diesel Oxidation Catalysts

1995-11-01
952650
Diesel emission control is being addressed worldwide to help preserve the global environment. In 1994, emission controls in the U.S. called for reduction of diesel particulate matter (PM) to 10 to 20% of 1986's initial limit. In the same year, we developed and marketed small and medium duty trucks which were equipped with PM reduction systems that oxidize soluble organic fraction (SOF) contained in the PM, in order to satisfy these new regulations. Prior to their marketing, a catalyst was selected from among several types of candidate catalysts. Durability tests were performed using a catalytic converter-equipped small duty truck to verify the durability of the chosen catalyst. The durability test course was set up combining urban areas and expressways in the southern part of California, U.S.A.. The cumulative total distance covered on the test course reached 200,000 km. During the durability test, the catalyst was evaluated by measurement of PM emission using a chassis dynamometer.
Technical Paper

Accuracy of A/F Calculation from Exhaust Gas Composition of SI Engines

1989-09-01
891971
The accuracy of real-time A/F measurement at engine test benches has been improved with a modified equation to calculate A/F from exhaust gas composition. In addition to CO, CO2, total hydrocarbon (THC) and O2, the proposed equation includes NO and NO2 concentration as variables. In an attempt to improve the accuracy of the assumed constants in the equation, experiments have been conducted using automotive exhaust H2O and H2 analyzers. The accuracy of the proposed equation was proven through experiments and it was also found useful for precise evaluation of three-way catalyst or oxygen sensor characteristics.
Technical Paper

Analysis of Vehicle Wind Throb Using CFD and Flow Visualization

1997-02-24
970407
Passenger cars with sunroofs sometimes experience a low frequency pulsation noise called “wind throb” when traveling with the roof open. This “wind throb” should be suppressed because it is an unpleasant noise which can adversely affect the acoustic environment inside a car. In this paper, 3-dimensional numerical flow analysis is applied around a car body to investigate the wind throb phenomenon. The computational scheme and the modeling method of the car body is first described. A flow visualization test in a water tunnel was completed for the simple car body shape to compare against the numerical procedure. The numerical and the visualized results compared well and the numerical simulation method employed was considered to be a reliable tool to analyze the wind throb phenomenon. Calculated results of pressure and vorticity distribution in the sunroof opening were analyzed with the spectrum of pressure fluctuation at the sunroof opening with and without a deflector.
Technical Paper

Application of Common Rail Fuel Injection System to a Heavy Duty Diesel Engine

1994-11-01
942294
In the diesel engine industry, the growing trends are toward wider use of electronically controlled high pressure fuel injection equipment to provide better engine performance, while conforming to the stringent exhaust emission standards. Although there have been some recent announcements of a diesel engine that applies an electronically controlled common rail type fuel injection system, there is little literature published about any attempt to reduce both exhaust emissions and noise and to improve engine performance by varying injection pressure and injection timing independently and introducing pilot injection in combination. This paper describes the details of a study made on the parameters associated with injection timing, injection pressure and pilot injection and the procedures for their optimization, with an electronically controlled common rail type fuel injection system installed in an in-line 6-cylinder 6.9 liter turbocharged and intercooled DI diesel engine.
Technical Paper

Ceramic Rocker Arm Insert for Internal Combustion Engines

1986-03-01
860397
The adoption of the diesel engine EGR systems, and increased uses of alcohol in spark ignited engines require wear resistant and low maintenance valve trains. Silicon nitride ceramic inserts were pressureless-sintered and successfully die-cast in rocker arms contacting the overhead cams in the valve trains. As fired, the insert sliding surface was fine and precise, eliminating any further processing. The comosite structure was machined with the sliding surface as a reference plane. Beside inherent high wear resistance, these lighter inserts reduced inertial forces of the trains and the torque required to drive the cams. The hard, brittle ceramics and a softer, more elastic aluminum alloy made the structure more durable and reliable. The process of development includes characterization, screening, manufacturing and quality control of the materials, and determination of wear resistance and reliability for this new structure.
Technical Paper

Combustion Control Technologies for Direct Injection SI Engine

1996-02-01
960600
Novel combustion control technologies for the direct injection SI engine have been developed. By adopting up-right straight intake ports to generate air tumble, an electro-magnetic swirl injector to realize optimized spray dispersion and atomization and a compact piston cavity to maintain charge stratification, it has become possible to achieve super-lean stratified combustion for higher thermal efficiency under partial loads as well as homogeneous combustion to realize higher performance at full loads. At partial loads, fuel is injected into the piston cavity during the later stage of the compression stroke. Any fuel spray impinging on the cavity wall is directed to the spark plug. Tumbling air flow in the cavity also assists the conservation of the rich mixture zone around the spark plug. Stable combustion can be realized under a air fuel ratio exceeding 40. At higher loads, fuel is injected during the early stage of the intake stroke.
Technical Paper

Common Rail Fuel Injection System for Improvement of Engine Performance on Heavy Duty Diesel Engine

1998-02-23
980806
With the intention of improving engine performance and emissions, the authors examined the influence of the method of initial fuel injection quantity reduction and of the injector configuration of a common rail fuel injection system on engine performance and exhaust emissions. Results showed that decreasing the nozzle hole diameter was an effective way to reduce the initial injection quantity without increasing black smoke. Compared to a three-way type injector, it was found that a two-way type injector can greatly reduce the amount of fuel leakage from the electromagnetic injector control valve and fuel consumption could be further improved by reduction of the driving loss. Furthermore, the increase of driving losses with higher injection pressure was small, and as a result, higher pressure injection was possible.
Technical Paper

Concept of Lean Combustion by Barrel-Stratification

1992-02-01
920678
A novel leanburn concept, ‘Barrel-Stratification’ is proposed. Fuel is introduced into the cylinder through one of the intake ports of a dual-intake-valve engine of which the tumbling air motion is intensified by the sophisticated intake port design. Because the velocity component in the direction parallel to the axis of tumble is small, charge stratification realized during the intake stroke is maintained until the end of the compression stroke. By the effects of charge stratification and the turbulence enhancement by tumble, stable combustion is realized even at extremely lean conditions. The concept was verified by flow field analysis applying a multi-color laser sheet technique and the flame structure analysis employing the blue-end image intensification realized by the interference mirror and the short delay phosphor.
Technical Paper

Contribution of Fuel Transport Lag and Statistical Perturbation in Combustion to Oscillation of SI Engine Speed at Idle

1987-02-01
870545
Periodic oscillations of the speed of SI engine with MPI system at idle observed in the steady state and in the converging process after the inditial increase of load were investigated. These non-steady phenomena are the self-excitations of the closed-loop system induced by the lag factors inherent to the system such as the manifold charging delay and the fuel metering and transport lag and by the nonlinear factors such as the sensitivity of the torque to the equivalence ratio. But, even in the cases where the lags and the nonlinearity are insufficient, continuous oscillations with large amplitude are observed in the actual engine. They can be explained by introducing the concept of external perturbation induced by the combustion fluctuation. Disturbance prevents the phase lag in the system from converging, resulting in the continuation of oscillation.
Technical Paper

Development of Advanced Emission-Control Technologies for Gasoline Direct-Injection Engines

2001-03-05
2001-01-0254
An extensive effort has been made, at Mitsubishi Motors, in the technology field of new catalysts and of the catalyst reaction control for the purpose of further improvement of the emission control with the GDI engines [1-2]. A new NOx-trap catalyst has been developed to satisfy the required higher catalyst performance under high-temperature condition. The new catalyst contains potassium (K) of excellent NOx-storage capacity under high-temperature region in the catalytic atmosphere, and to retain K stability zeolite is mixed in the catalyst layer as well as the substrate is coated with silica (SiO2). This new catalyst has been proven of the improved NOx conversion efficiency, and solved the long-pending problems particularly those experienced under high-temperature operation.
Technical Paper

Development of Diesel Particulate Trap Oxidizer System

1986-03-01
860294
A particulate trap oxidizer system to reduce diesel particulate emissions has been developed. This system consists of a ceramic foam filter with an optimum volume, shape, and mesh number in terms of collection efficiency, pressure loss and particulate blow-off; a catalyst with a low activated-temperature for particulate incineration and with no sulfate formation during highway driving; and a regeneration system which prevents particulate overcollection during long-term continuous low-load/low-speed driving where it is difficult to achieve self-burning of particulates with a catalytic reaction. This paper describes the development of the particulate trap oxidizer system with these technologies and presents the results of practicability evaluations and 50,000-mile vehicle durability tests.
Technical Paper

Development of High Performance Heavy-Duty Diesel Engine Oil to Extend Oil Drain Intervals: 5W30 Fully Synthetic Oil Containing MoDTC

2000-06-19
2000-01-1992
In this study, the oxidation stability, soot dispersancy, antiwear performance, and friction-reducing capability of friction modifiers (FMs) were evaluated, and an SAE 5W-30 fully synthetic oil with MoDTC type FMs was developed for heavy-duty diesel engines. In several engine tests, it was confirmed that the developed oil can double the oil drain interval in comparison with API CD SAE 30, even when EGR is applied, and improves the fuel efficiency.
Technical Paper

Development of Mitsubishi Flexible Fuel Vehicle

1991-02-01
910861
A flexible fuel vehicle (FFV) was evaluated through various tests for its potential as an alternative to the conventional gasoline vehicle. This paper presents the systems incorporated in the FFV and the test results. 50,000 mile emission durability tests were also performed and the potential of the FFV as a “Low Emission Vehicle” was assessed. As the result of extensive engineering work, we successfully developed a Galant FFV which exhibits very good durability and reliability. The emission control system which we have developed demonstrated that the vehicle has a good potential to comply with the California formaldehyde emission standard of 15 mg/mile. However, due to the large portion of unburnt methanol in the tail-pipe emissions, FFVs will have more difficulty than gasoline vehicles in meeting non-methane organic gas (NMOG) standards applicable to “Low Emission Vehicles”.
Technical Paper

Development of a New Combustion System (MCA-JET) in Gasoline Engine

1978-02-01
780007
A new combustion system - called MCA-JET- has been developed to improve combustion under the low speed, low load conditions typical of urban driving. Engines with this new system incorporate a special “jet valve”, in addition to the inlet and exhaust valves of the conventional combustion chamber, which directs air or a super-lean mixture towards the spark plug, and induces a strong swirling flow in the cylinder. This swirl persists during the compression and expansion processes, moves the mixture spirally and helps the flame to propagate. As a result, the combustion of lean mixtures, including those with exhaust gas recirculation, can be carried out rapidly and thus the fuel economy improved.
Technical Paper

Development of a New Multi-Mode Variable Valve Timing Engine

1993-03-01
930878
The 4-stroke SI engine offers better performance if its valve events can be varied depending on the operating conditions. Some engines in production are therefore incorporated with variable valve timing (VVT) mechanisms. All of such mechanisms available today however are for two-mode change-over between low-and high-speed operations. To achieve even better output and fuel economy, a new multi-mode VVT mechanism has been developed, featured by a unique hydraulic device for three-mode change-over as follows: Deactivate both intake and exhaust valves Select low-speed cam with moderate lifts and short durations Select high-speed cam with high lifts and long durations This mechanism enables shutting off unnecessary cylinders during low-speed cruise, or select optimum valve events during WOT acceleration over the entire engine speed range.
Technical Paper

Development of the NOx Adsorber Catalyst for Use with High-Temperature Condition

2001-03-05
2001-01-1298
NOx adsorber has already been used for the after-treatment system of series production vehicle installed with a lean burn or direct injection engine [1,2,3]. In order to improve NOx adsorbability at high temperatures, many researchers have recently been trying an addition of potassium (K) as well as other conventional NOx adsorbents. Potassium, however, reacts easily with the cordierite honeycomb substrate at high temperatures, and not only causes a loss in NOx adsorbability but also damages the substrate. Three new technologies have been proposed in consideration of the above circumstances. First, a new concept of K-capture is applied in washcoat design, mixed with zeolite, to improve thermal stability of K and to keep high NOx conversion efficiency, under high temperatures, of NOx adsorber catalyst. Second, another new technology, pre-coating silica over the boundary of a substrate and washcoat, is proposed to prevent the reaction between potassium and cordierite.
Technical Paper

EGR Technologies for a Turbocharged and Intercooled Heavy-Duty Diesel Engine

1997-02-24
970340
In this study three EGR methods were applied to a 12 liter turbocharged and intercooled Dl diesel engine, and the exhaust emission and fuel consumption characteristics were compared. One method is the Low Pressure Route system, in which the EGR is taken from down stream of the turbine to the compressor entrance. The other two systems are variations of the High Pressure Route system, in which the EGR is taken from the exhaust manifold to the intake manifold. One of the two High Pressure Route EGR systems is with back pressure valve located at downstream of the turbine and the other uses a variable geometry(VG) turbocharger. It was found that the High Pressure Route EGR system using VG turbocharger was the most effective and practical. With this method the EGR area could be enlarged and NOx reduced by 22% without increase in smoke or fuel consumption while maintaining an adequate excess air ratio.
Technical Paper

Feasibility Study of Two-stage Hybrid Combustion in Gasoline Direct Injection Engines

2002-03-04
2002-01-0113
Two-stage hybrid combustion for a 6-stroke gasoline direct injection SI engine is a new strategy to control the ignition of the HCCI combustion using hot-burned gas from the stratified lean SI combustion. This combustion is achieved by changing the camshafts, the cam-driven gear ratio and the engine control of a conventional 4-stroke gasoline direct injection engine without using a higher compression ratio, any fuel additives and induction air heating devices. The combustion processes are performed twice in one cycle. After the gas exchange process, the stratified ultra-lean SI combustion is performed. The hot-burned gas generated from this SI combustion is used as a trigger for the next HCCI combustion. After gasoline is injected in the burned gas, the hot and homogeneous lean mixture is recompressed without opening the exhaust valves. Thus the HCCI combustion occurs.
X