Refine Your Search

Topic

Author

Search Results

Technical Paper

2002 Pontiac Montana Frequency Improvements Employing Structural Foam

2001-04-30
2001-01-1609
This paper documents a joint development process between General Motors and Dow Automotive to improve primary body structure frequencies on the GM family of midsize vans by utilizing cavity-filling structural foam. Optimum foam locations, foam quantity, and foam density within the body structure were determined by employing both math-based modeling and vehicle hardware testing techniques. Finite element analysis (FEA) simulations of the Body-In-White (BIW) and “trimmed body” were used to predict the global body structure modes and associated resonant frequencies with and without structural foam. The objective of the FEA activity was to quantify frequency improvements to the primary body structure modes of matchboxing, bending, and torsion when using structural foam. Comprehensive hardware testing on the vehicle was also executed to validate the frequency improvements observed in the FEA results.
Technical Paper

2003 Chevrolet Kodiak and GMC TopKick Airbag Sensing System Development

2002-11-18
2002-01-3101
Airbag systems have been part of passenger car and truck programs since the mid-1980's. However, systems designed for medium and heavy duty truck applications are relatively new. The release of airbag systems for medium duty truck has provided some unique challenges, especially for the airbag sensing systems. Because of the many commercial applications within the medium duty market, the diversity of the sensing environments must be considered when designing and calibrating the airbag sensing system. The 2003 Chevrolet Kodiak and GMC TopKick airbag sensing development included significant work, not only on the development of airbag deployment events but also non-deployment events – events which do not require the airbag to deploy. This paper describes the process used to develop the airbag sensing system deployment events and non-deployment event used in the airbag sensing system calibration.
Technical Paper

A Connectorized Passive Optical Star for Automotive Networking Applications

1994-03-01
940798
This paper introduces for the first time a fully connectorized passive optical star for use with plastic optical fiber that addresses all automotive application requirements. A unique mixing element is presented that offers linear expandability, uniformity of insertion loss, and packaging flexibility. The star is constructed of all plastic molded components to make it low cost and produceable in high volume and is single-ended to facilitate vehicle integration. The star is connectorized to facilitate assembly into the vehicle power and signal distribution system.
Technical Paper

A Predictive Design Methodology for Active Top Pads During Airbag Deployment

1999-03-01
1999-01-0688
Using a combination of engineering test experience, explicit finite-element analysis, and advanced materials characterization, a predictive engineering method has been developed that can assist in the development of active top pads. An active top pad is the component of the instrument panel that covers the passenger airbag module and articulates during a crash event, allowing the airbag to deploy. This paper highlights the predictive analysis method, analytical results interpretation, and suggestions for future development.
Technical Paper

A Predictive Process for Spring Failure Rates in Automotive Parts Applications

1991-02-01
910356
This paper discusses an analytical technique for computing the failure rate of steel springs used in automotive part applications. Preliminary computations may be performed and used to predict spring failure rates quickly at a very early stage of a product development cycle and to establish program reliability impact before commitment. The analytical method is essentially a combination of various existing procedures that are logically sequenced to compute a spring probability of failure under various operational conditions. Fatigue life of a mechanical component can be computed from its S-N curve. For steels, the S-N curve can be approximated by formulae which describe the fatigue life as a function of its endurance limit and its alternating stress. Most springs in service are preloaded and the actual stress fluctuates about a mean level. In order to compute an equivalent alternating stress with zero mean, an analytical method based on the Goodman Diagram is used.
Technical Paper

Application of Variation Simulation in Body Assembly Process Design

2001-10-16
2001-01-3064
Build variation has long been recognized as one of the most important factors in vehicle performance. In this study an elastic assembly simulation program is used to guide a wheelhouse assembly process design to reduce build variation. Five (5) different clamping schemes are evaluated through the simulation program. From the five proposed process design choices, the best assembly process was identified, which results in reduced assembly variation and less tooling and manufacturing costs. Two different variation simulation approaches, one based on perturbation and the other based on Design of Experiments, were used to predict the assembly variation. Good agreement between the two approaches provided a validity check for the simulation tool.
Technical Paper

Application of a Constrained Layer Damping Treatment to a Cast Aluminum V6 Engine Front Cover

2005-05-16
2005-01-2286
Constrained Layer Damping (CLD) treatments have long provided a means to effectively impart damping to a structure [1, 2 and 3]. Traditionally, CLD treatments are constructed of a very thin polymer layer constrained by a thicker metal layer. Because the adhesion of a thin polymer layer is very sensitive to surface finish, surfaces that a CLD treatment can be effectively applied to have historically been limited to those that are very flat and smooth. New developments in material technology have provided thicker materials that are very effective and less expensive to apply when used as the damping layer in a CLD treatment. This paper documents the effectiveness of such a treatment on a cast aluminum front cover for a V6 engine. Physical construction of the treatment, material properties and design criteria will be discussed. Candidate applications, the assembly process, methods for secondary mechanical fastening will be presented.
Technical Paper

Assessment of Air Bag Deployment Loads with the Small Female Hybrid III Dummy

1993-11-01
933119
This study is an extension of previous work on driver air bag deployment loads which used the mid-size male Hybrid Ill dummy. Both small female and mid-size male Hybrid Ill dummies were tested with a range of near-positions relative to the air bag module. These alignments ranged from the head centered on the module to the chest centered on the module and with various separations and lateral shifts from the module. For both sized dummies the severity of the loading from the air bag depended on alignment and separation of the dummy with respect to the air bag module. No single alignment provided high responses for all body regions, indicating that one test at a typical alignment cannot simultaneously determine the potential for injury risk for the head, neck, and torso. Based on comparisons with their respective injury assessment reference values, the risk of chest injury appeared similar for both sized dummies.
Technical Paper

Brain Injury Risk Assessment of Frontal Crash Test Results

1994-03-01
941056
An objective, biomechanically based assessment is made of the risks of life-threatening brain injury of frontal crash test results. Published 15 ms HIC values for driver and right front passenger dummies of frontal barrier crash tests conducted by Transport Canada and NHTSA are analyzed using the brain injury risk curve of Prasad and Mertz. Ninety-four percent of the occupants involved in the 30 mph, frontal barrier compliance tests had risks of life-threatening brain injury less than 5 percent. Only 3 percent had risks greater than 16 percent which corresponds to 15 ms HIC > 1000. For belt restrained occupants without head contact with the interior, the risks of life-threatening brain injury were less than 2 percent. In contrast, for the more severe NCAP test condition, 27 percent of the drivers and 21 percent of the passengers had life-threatening brain injury risks greater than 16 percent.
Technical Paper

Brake Squeal Analysis by Finite Elements

1999-05-17
1999-01-1736
An approximate analysis method for brake squeal is presented. Using MSC/NASTRAN a geometric nonlinear solution is run using a friction stiffness matrix to model the contact between the pad and rotor. The friction coefficient can be pressure dependent. Next, linearized complex modes are found where the interface is set in a slip condition. Since the entire interface is set sliding, it produces the maximum friction work possible during the vibration. It is a conservative measure for stability evaluation. An averaged friction coefficient is measured and used during squeal. Dynamically unstable modes are found during squeal. They are due to friction coupling of neighboring modes. When these modes are decoupled, they are stabilized and squeal is eliminated. Good correlation with experimental results is shown. It will be shown that the complex modes baseline solution is insensitive to the type of variations in pressure and velocity that occur in a test schedule.
Technical Paper

Child Occupant Safety - What Might We Expect

2000-11-01
2000-01-C039
The air bag safety issues became evident in 1995 and other factors have conjoined to change the climate regarding motor vehicle safety. Traditionally, motor vehicle safety issues have been evaluated based upon the effects upon average adult males. The new climate requires consideration of the effects on persons of differing size and gender. By including consideration of children and women, rulemaking and the applied technologies are able to better optimize safety than is the case when rules are focused only on the average adult male. Automotive electronics serves a key role in the migration from a one-size-fits- all protection to a more customized protection for a variety of occupants. The enhancements have been the most prominent in the area of sensing, be it the sensing and characterization of the crash itself, or the sensing and characterization of occupants in the vehicle.
Technical Paper

Dynamic Stress Correlation and Modeling of Driveline Bending Integrity for 4WD Sport Utility Vehicles

2002-03-04
2002-01-1044
Reducing the high cost of hardware testing with analytical methods has been highly accelerated in the automotive industry. This paper discusses an analytical model to simulate the driveline bending integrity test for the longitudinal 4WD-driveline configuration. The dynamic stresses produced in the adapter/transfer case and propeller shaft can be predicted analytically using this model. Particularly, when the 4WD powertrain experiences its structural bending during the operation speed and the propeller shaft experiences the critical whirl motion and its structural bending due to the inherent imbalance. For a 4WD-Powertrain application, the dynamic coupling effect of a flexible powertrain with a flexible propeller shaft is significant and demonstrated in this paper. Three major subsystems are modeled in this analytical model, namely the powertrain, the final rear drive, and the propeller shafts.
Technical Paper

Effect of Simulated Material Properties and Residual Stresses on High Cycle Fatigue Prediction in a Compacted Graphite Iron Engine Block

2010-04-12
2010-01-0016
Casting, machining and structural simulations were completed on a V8 engine block made in Compacted Graphite Iron (CGI) for use in a racing application. The casting and machining simulations generated maps of predicted tensile strength and residual stress in the block. These strength and stress maps were exported to a finite element structural model of the machined part. Assembly and operating loads were applied, and stresses due to these loads were determined. High cycle fatigue analysis was completed, and three sets of safety factors were calculated using the following conditions: uniform properties and no residual stress, predicted properties and no residual stress, and predicted properties plus residual stress.
Technical Paper

Evaluation of the Hybrid III Dummy Interactions with Air Bag in Frontal Crash by Finite Element Simulation

1995-11-01
952705
A deformable finite element dummy model was used to simulate air bag interaction with in-position passenger side occupants in frontal vehicle crash. This dummy model closely simulates the Hybrid III hardware with respect to geometry, mass, and material properties. Test data was used to evaluate the validity of the model. The calculated femur loads, chest acceleration and head acceleration were in good agreement with the test data. A semi-rigid dummy model (with rigid chest) was derived from the deformable dummy to improve turnaround time. Simulation results using the semi-rigid dummy model were also in reasonable agreement with the test data. For comparison purpose, simulations were also performed using PAMCVS, a hybrid code which couples the finite element code PAMCRASH with the rigid body occupant code. The deformable dummy model predicted better chest acceleration than the other two models.
Technical Paper

Experimental Analysis of Aspirating Airbag Units

1999-03-01
1999-01-0436
Aspirating airbag modules are unique from other designs in that the gas entering the airbag is a mixture of inflator-delivered gas and ambient-temperature air entrained from the atmosphere surrounding the module. Today's sophisticated computer simulations of an airbag deployment typically require as input the mass-flow rate, chemical composition and thermal history of the gas exiting the canister and entering the airbag. While the mass-flow rate and temperature of the inflator-delivered gas can be obtained from a standard tank test, information on air entrainment into an aspirated canister is limited. The purpose of this study is to provide quantitative information about the aspirated mass-flow rate during airbag deployment. Pressure and velocity measurements are combined with high-speed photography in order to gain further insight into the relationship between the canister pressure, the rate of cabin-air entrainment and the airbag deployment.
Technical Paper

FEA Predictions and Test Results from Magnesium Beams in Bending and Axial Compression

2010-04-12
2010-01-0405
Finite element analysis (FEA) predictions of magnesium beams are compared to load versus displacement test measurements. The beams are made from AM60B die castings, AM30 extrusions and AZ31 sheet. The sheet and die cast beams are built up from two top hat sections joined with toughened epoxy adhesive and structural rivets. LS-DYNA material model MAT_124 predicts the magnesium behavior over a range of strain rates and accommodates different responses in tension and compression. Material test results and FEA experience set the strain to failure limits in the FEA predictions. The boundary conditions in the FEA models closely mimic the loading and constraint conditions in the component testing. Results from quasi-static four-point bend, quasi-static axial compression and high-speed axial compression tests of magnesium beams show the beam's behavior over a range of loadings and test rates. The magnesium beams exhibit significant material cracking and splitting in all the tests.
Technical Paper

Fatal Crashes of Female Drivers Wearing Safety Belts

1996-02-01
960459
Fatal crash circumstances for 48 belted female drivers were studied in-depth and compared to those of 83 belted male drivers in a similar population of vehicles. Women had a higher incidence of crashes on slippery roads, during lane changes and passing maneuvers than men who had a higher rate of aggressive driving and speed related crashes (χ2 = 10.47, p < 0.001). Driver-side damage was significantly more frequent in female than male crashes (χ2 = 5.74, p < 0.025) and women had a higher fraction of side impacts (45.9% v 31.4%) and crashes during daylight (87.0% v 72.3%, χ2 = 3.65, p < 0.05) than men. Women also had a higher fraction of potentially avoidable crashes than men (57.5% v 39.0%) and a lower involvement related to aggressive driving (10.6% v 25.6%). These differences were statistically significant (χ2 = 5.41, p < 0.025).
Technical Paper

Glass Drop Design for Automobile Windows - Design of Glass Contour, Shape, Drop Motion, and Motion Guidance Systems

1995-04-01
951110
This paper presents a new computerized approach for designing the automobile window glass contour, the glass drop motion, and the regulator systems. The three-dimensional geometrical relationship of the glass contour, the drop path, and its guidance system have been studied. Methods for barrel and helical drops are presented for optimizing the glass profile and drop path trajectories. Criteria for perfecting the glass contour are developed for shaping the profile of the vehicle clay model. Methods for correcting the glass contour and shape are presented. Examples are provided to illustrate how to improve the design. This approach integrates the development works of glass contour, drop motion and regulator systems. Through this design approach the window glass can fit and move perfectly in the door assembly.
Technical Paper

Interpretations of the Impact Responses of a 3-Year-Old Child Dummy Relative to Child Injury Potential

1982-01-01
826048
An analysis is presented that was used to interpret the significance of response measurements made with a specially instrumented, 3-year-old child dummy that was used to evaluate child injury potential of the second-generation, passenger inflatable restraint system that was being developed by General Motors Corporation. Anesthetized animals and a specially instrumented child dummy, both 3-year-old child surrogates, were exposed to similar inflating-cushion, simulated collision environments. The exposure environments were chosen to produce a wide spectrum of animal injury types and severities, and a corresponding broad range of child dummy responses. For a given exposure environment, the animal injury severity ratings for the head, neck, thorax and abdomen are paired with dummy response values corresponding to these body regions.
Technical Paper

Numerical Simulation of a Vehicle Side Impact Test: Development. Application and Design Iterations

1996-02-01
960101
This paper describes a numerical simulation technique applicable to the FMVSS 214 side impact test through the use of the finite element method (FEM) technology. The paper outlines the development of the side impact dummy (SID), moving deformable barrier (MDB) and the test vehicle FEM models, as well as the development of new advanced constitutive models of materials and algorithms in LS-DYNA3D which are related to the topic. Presented in the paper are some initial simulation problems which were encountered and solved, as well as the correlation of the simulation data to the physical test.
X