Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Idealized Modeling and Analysis of the Shuttle Orbiter Wing Leading Edge Impact Data

2007-09-17
2007-01-3882
Some selected segments of the ascent and the on-orbit data from the Space Shuttle flight, STS114, as well as some selected laboratory test article data have been analyzed using wavelets, power spectrum and autocorrelation function. Additionally, a simple approximate noise test was performed on these data segments to confirm the presence or absence of white noise behavior in the data. This study was initially directed at characterizing the on-orbit background against which a signature due to an impact during on-orbit operation could be identified. The laboratory data analyzed here mimic low velocity impact that the Orbiter may be subjected to during the very initial stages of ascent.
Technical Paper

Machine Learning for Detecting and Locating Damage in a Rotating Gear

2005-10-03
2005-01-3371
This paper describes a multi-disciplinary damage detection methodology that can aid in detecting and diagnosing a damage in a given structural system, not limited to the example of a rotating gear presented here. Damage detection is performed on the gear stress data corresponding to the steady state conditions. The normal and damage data are generated by a finite-difference solution of elastodynamic equations of velocity and stress in generalized coordinates1. The elastodynamic solution provides a knowledge of the stress distribution over the gear such as locations of stress extrema, which in turn can lead to an optimal placement of appropriate sensors over the gear to detect a potential damage. The damage detection is performed by a multi-function optimization that incorporates Tikhonov kernel regularization reinforced by an added Laplacian regularization term as used in semi-supervised machine learning. Damage is mimicked by reducing the rigidity of one of the gear teeth.
X