Refine Your Search

Topic

Author

Search Results

Technical Paper

A Decade of Life Sciences Experiment Unique Equipment Development for Spacelab and Space Station, 1990-1999

1999-07-12
1999-01-2175
Ames Research Center’s Life Sciences Division has developed and flown an extensive array of spaceflight experiment unique equipment (EUE) during the last decade of the twentieth century. Over this ten year span, the EUE developed at ARC supported a vital gravitational biology flight research program executed on several different platforms, including the Space Shuttle, Spacelab, and Space Station Mir. This paper highlights some of the key EUE elements developed at ARC and flown during the period 1990-1999. Resulting lessons learned will be presented that can be applied to the development of similar equipment for the International Space Station.
Technical Paper

A Prototype Pyrolysis / Oxidation System for Solid Waste Processing

2005-07-11
2005-01-3083
Pyrolysis is a very versatile waste processing technology which can be tailored to produce a variety of solid liquid and/or gaseous products. The main disadvantages of pyrolysis processing are: (1) the product stream is more complex than for many of the alternative treatments; (2) the product gases cannot be vented directly into the cabin without further treatment because of the high CO concentrations. One possible solution is to combine a pyrolysis step with catalytic oxidation (combustion) of the effluent gases. This integration takes advantage of the best features of each process, which is insensitivity to product mix, no O2 consumption, and batch processing, in the case of pyrolysis, and simplicity of the product effluent stream in the case of oxidation. In addition, this hybrid process has the potential to result in a significant reduction in Equivalent System Mass (ESM) and system complexity.
Technical Paper

Aerodynamic Drag of Heavy Vehicles (Class 7-8): Simulation and Benchmarking

2000-06-19
2000-01-2209
This paper describes research and development for reducing the aerodynamic drag of heavy vehicles by demonstrating new approaches for the numerical simulation and analysis of aerodynamic flow. Experimental validation of new computational fluid dynamics methods are also an important part of this approach. Experiments on a model of an integrated tractor-trailer are underway at NASA Ames Research Center and the University of Southern California (USC). Companion computer simulations are being performed by Sandia National Laboratories (SNL), Lawrence Livermore National Laboratory (LLNL), and California Institute of Technology (Caltech) using state-of-the-art techniques.
Technical Paper

Airport Remote Tower Sensor Systems

2001-09-11
2001-01-2651
Remote Tower Sensor Systems are proof-of-concept prototypes being developed by NASA/Ames Research Center (NASA/ARC) with collaboration with the FAA and NOAA. RTSS began with the deployment of an Airport Approach Zone Camera System that includes real-time weather observations at San Francisco International Airport. The goal of this research is to develop, deploy, and demonstrate remotely operated cameras and sensors at several major airport hubs and un-towered airports. RTSS can provide real-time weather observations of airport approach zone. RTSS will integrate and test airport sensor packages that will allow remote access to real-time airport conditions and aircraft status.
Technical Paper

An On-line Technology Information System (OTIS) for Advanced Life Support

2003-07-07
2003-01-2636
An On-line Technology Information System (OTIS) is currently being developed for the Advanced Life Support (ALS) Program. This paper describes the preliminary development of OTIS, which is a system designed to provide centralized collection and organization of technology information. The lack of thorough, reliable and easily understood technology information is a major obstacle in effective assessment of technology development progress, trade studies, metric calculations, and technology selection for integrated testing. OTIS will provide a formalized, well-organized protocol to communicate thorough, accurate, current and relevant technology information between the hands-on technology developer and the ALS Community. The need for this type of information transfer system within the Solid Waste Management (SWM) element was recently identified and addressed.
Technical Paper

Assessment of the Vapor Phase Catalytic Ammonia Removal (VPCAR) Technology at the MSFC ECLS Test Facility

2007-07-09
2007-01-3036
The Vapor Phase Catalytic Ammonia Removal (VPCAR) technology has been previously discussed as a viable option for the Exploration Water Recovery System. This technology integrates a phase change process with catalytic oxidation in the vapor phase to produce potable water from exploration mission wastewaters. A developmental prototype VPCAR was designed, built and tested under funding provided by a National Research Announcement (NRA) project. The core technology, a Wiped Film Rotating Device (WFRD) was provided by Water Reuse Technologies under the NRA, whereas Hamilton Sundstrand Space Systems International performed the hardware integration and acceptance test of the system. Personnel at the Ames Research Center performed initial systems test of the VPCAR using ersatz solutions. To assess the viability of this hardware for Exploration Life Support (ELS) applications, the hardware has been modified and tested at the MSFC ECLS Test Facility.
Technical Paper

Astrobiology Hydrothermal Vent Technology Development

2000-07-10
2000-01-2342
The study of life in extreme environments provides an important basis from which we can undertake the search for extraterrestrial life. This paper provides a description of a program focused on developing technologies which are necessary to evaluate the potential for the existence of a deep sub-seafloor biosphere.
Technical Paper

Aviation Data Integration System

2003-09-08
2003-01-3009
A number of airlines have FOQA programs that analyze archived flight data. Although this analysis process is extremely useful for assessing airline concerns in the areas of aviation safety, operations, training, and maintenance, looking at flight data in isolation does not always provide the context necessary to support a comprehensive analysis. To improve the analysis process, the Aviation Data Integration Project (ADIP) has been developing techniques for integrating flight data with auxiliary sources of relevant aviation data. ADIP has developed an aviation data integration system (ADIS) comprised of a repository and associated integration middleware that provides rapid and secure access to various data sources, including weather data, airport operating condition (ATIS) reports, radar data, runway visual range data, and navigational charts.
Technical Paper

Carbon Production in Space from Pyrolysis of Solid Waste

2006-07-17
2006-01-2183
Pyrolysis processing of solid waste in space will inevitably lead to carbon formation as a primary pyrolysis product. The amount of carbon depends on the composition of the starting materials and the pyrolysis conditions (temperature, heating rate, residence time, pressure). Many paper and plastic materials produce almost no carbon residue upon pyrolysis, while most plant biomass materials or human wastes will yield up to 20-40 weight percent on a dry, as-received basis. In cases where carbon production is significant, it can be stored for later use to produce CO2 for plant growth. Alternatively it can be partly gasified by an oxidizing gas (e.g., CO2, H2O, O2) in order to produce activated carbon. Activated carbons have a unique capability of strongly absorbing a great variety of species, ranging from SO2 and NOx, trace organics, mercury, and other heavy metals.
Technical Paper

Category A One-Engine-Inoperative Procedures and Pilot Aids for Multi-Engine Civil Rotorcraft

1996-10-01
965616
This paper summarizes the results to date of an on-going research program being conducted by NASA in conjunction with the FAA vertical flight program office. The goal of the program is to reduce pilot workload and increase safety for rotorcraft category A terminal area procedures. Two piloted simulations were conducted on the NASA Ames Vertical Motion Simulator to examine the benefits of optimal procedures, cockpit displays, and alternate cueing methods. Measures of performance, handling qualities ratings and pilot comments indicate that such enhancements can greatly assist a pilot in handling an engine failure in the terminal area.
Technical Paper

Characterization of Condensate from the Research Animal Holding Facility (RAHF)

1994-06-01
941506
Life Sciences research on Space Station will utilize rats to study the effects of the microgravity environment on mammalian physiology and to develop countermeasures to those effects for the health and safety of the crew. The animals will produce metabolic water which must be reclaimed to minimize logistics support. The condensate from the Research Animal Holding Facility (RAHF) flown on Spacelab Life Sciences-2 (SLS-2) in October 1993 was used as an analog to determine the type and quantity of constituents which the Space Station (SS) water reclamation system will have to process. The most significant organics present in the condensate were 2-propanol, glycerol, ethylene glycol, 1,2-propanediol, acetic acid, acetone, total proteins, urea and caprolactam while the most significant inorganic was ammonia. Microbial isolates included Xanthomonas, Sphingobacterium, Pseudomonas, Penicillium, Aspergillus and Chrysosporium.
Technical Paper

Considerations in the Development of Habitats for the Support of Live Rodents on the International Space Station

2001-07-09
2001-01-2228
The animal habitat under development for the International Space Station (ISS) provides a unique opportunity for the physiological and biological science community to perform controlled experiments in microgravity on rats and mice. This paper discusses the complexities that arise in developing a new animal habitat to be flown aboard the ISS. Such development is incremental and moves forward by employing the past successes, learning from experienced shortcomings, and utilizing the latest technologies. The standard vivarium cage on the ground can be a very simple construction, however the habitat required for rodents in microgravity on the ISS is extremely complex. This discussion presents an overview of the system requirements and focuses on the unique scientific and engineering considerations in the development of the controlled animal habitat parameters. In addition, the challenges to development, specific science, animal welfare, and engineering issues are covered.
Technical Paper

Crop Models for Varying Environmental Conditions

2002-07-15
2002-01-2520
New variable environment Modified Energy Cascade (MEC) crop models were developed for all the Advanced Life Support (ALS) candidate crops and implemented in SIMULINK. The MEC models are based on the Volk, Bugbee, and Wheeler Energy Cascade (EC) model and are derived from more recent Top-Level Energy Cascade (TLEC) models. The MEC models were developed to simulate crop plant responses to day-to-day changes in photosynthetic photon flux, photoperiod, carbon dioxide level, temperature, and relative humidity. The original EC model allowed only changes in light energy and used a less accurate linear approximation. For constant nominal environmental conditions, the simulation outputs of the new MEC models are very similar to those of earlier EC models that use parameters produced by the TLEC models. There are a few differences. The new MEC models allow setting the time for seed emergence, have more realistic exponential canopy growth, and have corrected harvest dates for potato and tomato.
Technical Paper

Development of Decision Support Capability in ALS

2004-07-19
2004-01-2577
The ALS Metric is the predominant tool for predicting the cost of ALS systems. Metric goals for the ALS Program are daunting, requiring a threefold increase in the ALS Metric by 2010. Compounding the problem is the slow rate new ALS technologies reach the maturity required for consideration in the ALS Metric and the slow rate at which new configurations are developed. This limits the search space and potentially gives the impression of a stalled research and development program. Without significant increases in the state of the art of ALS technology, the ALS goals involving the Metric may remain elusive. A paper previously presented at his meeting entitled, “Managing to the metric: An approach to optimizing life support costs.” A conclusion of that paper was that the largest contributors to the ALS Metric should be targeted by ALS researchers and management for maximum metric reductions.
Technical Paper

Development of Experiment Kits for Processing Biological Samples In-Flight on SLS-2

1994-06-01
941288
The Spacelab Life Sciences-2 (SLS-2) mission provided scientists with the unique opportunity of obtaining inflight rodent tissue and blood samples during a 14-day mission flown in October, 1993. In order to successfully obtain these samples, Ames Research Center's Space Life Sciences Payloads Office has developed an innovative, modular approach to packaging the instruments used to obtain and preserve the inflight tissue and blood samples associated with the hematology experiments on SLS-2. The design approach organized the multitude of instruments into 12 different 5x6x1 inch kits which were each used to accomplish a particular experiment functional objective on any given day during the mission. The twelve basic kits included blood processing, isotope and erythropoietin injection, body mass measurement, and microscope slides.
Technical Paper

Development of an Advanced Life Support Testbed at the Amundsen-Scott South Pole Station

1994-06-01
941610
This paper presents a description of the Controlled Ecological Life Support System (CELSS) Antarctic Analog Project (CAAP) and its functionality as a pilot study for the design of a future Lunar-Mars habitat. A description of the prototype development testbed, located at Ames Research, is provided as well as an analysis of the key design parameters. The CAAP program is tasked with the development of a life support testbed at the South Pole. This facility will include food production, waste processing, and in situ energy production capabilities. The testbed will provide NASA with a remote facility located in an extremely harsh environment which has been designed to provide a useful analog to the deployment of a future Lunar-Martian habitat. NASA's program goals are the operational testing of life support technologies and the conduct of scientific studies to facilitate future technology selection and system design.
Technical Paper

Enabling Strategic Flight Deck Route Re-Planning Within A Modified ATC Environment: The Display of 4-D Intent Information on a CSD

2000-10-10
2000-01-5574
The concept of free flight introduces many challenges for both air and ground aviation operations. Of considerable concern has been the issue of moving from centralized control and responsibility to decentralized control and distributed responsibility for aircraft separation. Data from capacity studies suggest that we will reach our capacity limits with ATC centralized control within the next 2 decades, if not sooner. Based on these predictions, research on distributed air-ground concepts was under taken by NASA Advanced Air Transportation Technologies Program to identify and develop air-ground concepts in support of free-flight operations. This paper will present the results of a full mission air-ground simulation conducted in the NASA Crew Vehicle Systems Research Facility. The purpose of the study was to evaluate the effect of advanced displays with “intent” (4-D flight plans) information on flight crew and ATC performance during limited free-flight operations.
Technical Paper

Experimental Results Obtained with a Pilot Scale System to Remove Pollutants from an Incinerator Effluent

2002-07-15
2002-01-2395
Incineration is a promising method for converting biomass and human waste into CO2 and H2O during extended planetary exploration. Unfortunately, it produces NOX and other pollutants. TDA Research has developed a safe and effective process to remove NOX from waste incinerator product gas streams. In our process, NO is catalytically oxidized to NO2, which is then removed with a wet scrubber. In a SBIR Phase II project, TDA designed and constructed a pilot scale system, which will be used with the incinerator at NASA Ames Research Center. In this paper, we present test results obtained with our system, which clearly demonstrate the effectiveness of this approach to NOX control.
Technical Paper

Fundamental Biology Research During the NASA/Mir Science Program

1995-07-01
951477
A multi-discipline, multi-year collaborative spaceflight research program (NASA/Mir Science Program) has been established between the United States and Russia utilizing the capabilities of the Russian Mir Space Station and the NASA space shuttle fleet. As a key research discipline to be carried out onboard Mir, fundamental biology research encompasses three basic objectives: first, to investigate long-term effects of microgravity upon plant and avian physiology and developmental biology; second, to investigate the long-term effects of microgravity upon circadian rhythm patterns of biological systems; and third, to characterize the long-term radiation environment (internal and external) of the Russian Mir space station. The first joint U.S./Russian fundamental biology research on-board Mir is scheduled to begin in March, 1995 with the Mir mission 18 and conclude with the docking of the U.S. shuttle to Mir in June, 1995 during the STS-71, Spacelab/Mir Mission-1 (SLM-1).
Technical Paper

Integration of Cockpit Displays for Surface Operations: The Final Stage of a Human-Centered Design Approach

2000-10-10
2000-01-5521
A suite of cockpit navigation displays for low-visibility airport surface operations has been designed by researchers at NASA Ames Research Center following a human-centered process. This paper reports on the final research effort in this process that examined the procedural integration of these technologies into the flight deck. Using NASA Ames' high-fidelity Advanced Concepts Flight Simulator, eighteen airline crews completed fourteen low-visibility (RVR 1000′) land-and-taxi scenarios that included both nominal (i.e., hold short of intersections, route amendments) and off-nominal taxi scenarios designed to assess how pilots integrate these technologies into their procedures and operations. Recommendations for integrating datalink and cockpit displays into current and future surface operations are provided.
X