Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

1D Model for Correcting the Rate of Injection Signal Based on Geometry and Temperature Influence

2017-03-28
2017-01-0819
The fuel consumption and emissions of diesel engines is strongly influenced by the injection rate pattern, which influences the in-cylinder mixing and combustion process. Knowing the exact injection rate is mandatory for an optimal diesel combustion development. The short injection time of no more than some milliseconds prevents a direct flow rate measurement. However, the injection rate is deduced from the pressure change caused by injecting into a fuel reservoir or pipe. In an ideal case, the pressure increase in a fuel pipe correlates with the flow rate. Unfortunately, real measurement devices show measurement inaccuracies and errors, caused by non-ideal geometrical shapes as well as variable fuel temperature and fuel properties along the measurement pipe. To analyze the thermal effect onto the measurement results, an available rate measurement device is extended with a flexible heating system as well as multiple pressure and temperature sensors.
Technical Paper

A CFD Validation Study for Automotive Aerodynamics

2000-03-06
2000-01-0129
A study was conducted using Ford's nine standard CFD calibration models as described in SAE paper 940323. The models are identical from the B-pillar forward but have different back end configurations. These models were created for the purpose of evaluating the effect of back end geometry variations on aerodynamic lift and drag. Detailed experimental data is available for each model in the form of surface pressure data, surface flow visualization, and wake flow field measurements in addition to aerodynamic lift and drag values. This data is extremely useful in analyzing the accuracy of the numerical simulations. The objective of this study was to determine the capability of a digital physics based commercial CFD code, PowerFLOW ® to accurately simulate the physics of the flow field around the car-like benchmark shapes.
Technical Paper

A Comparison of Four Methods for Determining the Octane Index and K on a Modern Engine with Upstream, Port or Direct Injection

2017-03-28
2017-01-0666
Combustion in modern spark-ignition (SI) engines is increasingly knock-limited with the wide adoption of downsizing and turbocharging technologies. Fuel autoignition conditions are different in these engines compared to the standard Research Octane Number (RON) and Motor Octane Numbers (MON) tests. The Octane Index, OI = RON - K(RON-MON), has been proposed as a means to characterize the actual fuel anti-knock performance in modern engines. The K-factor, by definition equal to 0 and 1 for the RON and MON tests respectively, is intended to characterize the deviation of modern engine operation from these standard octane tests. Accurate knowledge of K is of central importance to the OI model; however, a single method for determining K has not been well accepted in the literature.
Technical Paper

A Computational Investigation of the Effects of Swirl Ratio and Injection Pressure on Mixture Preparation and Wall Heat Transfer in a Light-Duty Diesel Engine

2013-04-08
2013-01-1105
In a recent study, quantitative measurements were presented of in-cylinder spatial distributions of mixture equivalence ratio in a single-cylinder light-duty optical diesel engine, operated with a non-reactive mixture at conditions similar to an early injection low-temperature combustion mode. In the experiments a planar laser-induced fluorescence (PLIF) methodology was used to obtain local mixture equivalence ratio values based on a diesel fuel surrogate (75% n-heptane, 25% iso-octane), with a small fraction of toluene as fluorescing tracer (0.5% by mass). Significant changes in the mixture's structure and composition at the walls were observed due to increased charge motion at high swirl and injection pressure levels. This suggested a non-negligible impact on wall heat transfer and, ultimately, on efficiency and engine-out emissions.
Technical Paper

A Cylinder Pressure Correction Method Based on Calculated Polytropic Exponent

2017-10-08
2017-01-2252
The acquisition of more authentic cylinder pressure data is the basis of engine combustion analysis. Due to the multiple advantages, quartz piezoelectric pressure transducers are generally applied to the measurement of the cylinder pressure. However, these transducers can only produce dynamic cylinder pressure data which may be significantly different from the actual values. Thus, the cylinder pressure data need to be corrected through a certain method, while different cylinder pressure correction methods will cause result divergences of the combustion analysis. This paper aims to acquire a proper cylinder pressure correction method by carrying out theoretical analysis based on the polytropic process in the compression stroke as well as the experimental research of the cylinder pressure of a turbocharged eight-cylinder diesel engine.
Technical Paper

A Dynamic Filtration Model for the Power-shift Steering Transmission

2016-04-05
2016-01-1139
Within the hydraulic shifting circuit of power-shift steering transmission, the performance of filter is generally characterized by the theoretical filtration ratio. However in practical work, the actual filtration ratio is far less than the theoretical ratio. On the basis of investigation on the structural characteristics, the oil flowing distribution and the filter mechanisms, the re-filtering rate ω and recontaminative rate θ are defined to simulate the actual filtering process. Therefore, the dynamic filtration ratio is modelled and simulated in MATLAB/Simulink to investigate that how the filtering rate ω and θ influence the dynamic filtration ratio and the deviation between the dynamic ratio and theoretical ratio. Afterwards, the variation of dynamic filtration ratio is tested through a filtration experiment under the circumstances of various flow rate, temperature and pressure.
Technical Paper

A Method of Predicting Brake Specific Fuel Consumption Maps

1999-03-01
1999-01-0556
A method of predicting brake specific fuel consumption characteristics from limited specifications of engine design has been investigated. For spark ignition engines operating on homogeneous mixtures, indicated specific fuel consumption based on gross indicated power is related to compression ratio and spark timing relative to optimum values. The influence of burn rate is approximately accounted for by the differences in spark timings required to correctly phase combustion. Data from engines of contemporary design shows that indicated specific fuel consumption can be defined as a generic function of relative spark timing, mixture air/fuel ratio and exhaust gas recirculation rate. The additional information required to generate brake specific performance maps is cylinder volumetric efficiency, rubbing friction, auxiliary loads, and exhaust back pressure characteristics.
Technical Paper

A New Analysis Method for Accurate Accounting of IC Engine Pumping Work and Indicated Work

2004-03-08
2004-01-1262
In order to improve fuel economy, engine manufacturers are investigating various technologies that reduce pumping work in spark ignition engines. Current cylinder pressure analysis methods do not allow valid comparison of pumping work reduction strategies. Existing methods neglect valve timing effects which occur during the expansion and compression strokes, but are actually part of the gas exchange process. These additional pumping work contributions become more significant when evaluating non-standard valve timing concepts. This paper outlines a new analysis method for calculating the pumping work and indicated work of a 4-stroke internal combustion engine. Corrections to PMEP and IMEP are introduced which allow the valid comparison of pumping work and indicated efficiency between engines with different pumping work reduction strategies.
Journal Article

A Novel Technique for Measuring Cycle-Resolved Cold Start Emissions Applied to a Gasoline Turbocharged Direct Injection Engine

2020-04-14
2020-01-0312
There is keen interest in understanding the origins of engine-out unburned hydrocarbons emitted during SI engine cold start. This is especially true for the first few firing cycles, which can contribute disproportionately to the total emissions measured over standard drive cycles such as the US Federal Test Procedure (FTP). This study reports on the development of a novel methodology for capturing and quantifying unburned hydrocarbon emissions (HC), CO, and CO2 on a cycle-by-cycle basis during an engine cold start. The method was demonstrated by applying it to a 4 cylinder 2 liter GTDI (Gasoline Turbocharged Direct Injection) engine for cold start conditions at an ambient temperature of 22°C. For this technique, the entirety of the engine exhaust gas was captured for a predetermined number of firing cycles.
Journal Article

A Semi-Detailed Chemical Kinetic Mechanism of Acetone-Butanol-Ethanol (ABE) and Diesel Blends for Combustion Simulations

2016-04-05
2016-01-0583
With the development of advanced ABE fermentation technology, the volumetric percentage of acetone, butanol and ethanol in the bio-solvents can be precisely controlled. To seek for an optimized volumetric ratio for ABE-diesel blends, the previous work in our team has experimentally investigated and analyzed the combustion features of ABE-diesel blends with different volumetric ratio (A: B: E: 6:3:1; 3:6:1; 0:10:0, vol. %) in a constant volume chamber. It was found that an increased amount of acetone would lead to a significant advancement of combustion phasing whereas butanol would compensate the advancing effect. Both spray dynamic and chemistry reaction dynamic are of great importance in explaining the unique combustion characteristic of ABE-diesel blend. In this study, a semi-detailed chemical mechanism is constructed and used to model ABE-diesel spray combustion in a constant volume chamber.
Technical Paper

A Study of Calibration of Electronic-controlled Injector Employed in High Pressure Common Rail System

2008-06-23
2008-01-1742
In order to meet the need of high pressure common rail diesel engine, calibration for injection quantity and basic MAP of electronic-controlled injector are made. Combining with testing data, influencing factors for consistency and identity of injecting fuel in electronic-controlled injector are analyzed, in the condition of small quantity, controlled-pressure undulation quantity and injecting pulse revising are presented to achieve the respective demand. Primary basic map for common rail pressure and injecting fuel are fixed with alterable step method, and calibration of fuel quantity MAP is made on bench test. Finally test of electronic-controlled injector equipped in diesel engine is finished, testing result showed that calibration process and method are reasonable.
Journal Article

A Study of Piston Geometry Effects on Late-Stage Combustion in a Light-Duty Optical Diesel Engine Using Combustion Image Velocimetry

2018-04-03
2018-01-0230
In light-duty direct-injection (DI) diesel engines, combustion chamber geometry influences the complex interactions between swirl and squish flows, spray-wall interactions, as well as late-cycle mixing. Because of these interactions, piston bowl geometry significantly affects fuel efficiency and emissions behavior. However, due to lack of reliable in-cylinder measurements, the mechanisms responsible for piston-induced changes in engine behavior are not well understood. Non-intrusive, in situ optical measurement techniques are necessary to provide a deeper understanding of the piston geometry effect on in-cylinder processes and to assist in the development of predictive engine simulation models. This study compares two substantially different piston bowls with geometries representative of existing technology: a conventional re-entrant bowl and a stepped-lip bowl. Both pistons are tested in a single-cylinder optical diesel engine under identical boundary conditions.
Technical Paper

A Testbed for the Mars Returned Sample Handling Facility

2001-07-09
2001-01-2412
Samples of Mars surface material will return to Earth in 2014. Prior to curation and distribution to the scientific community the returned samples will be isolated in a special facility until their biological safety has been assessed following protocols established by NASA’s Planetary Protection Office. The primary requirements for the pre-release handling of the Martian samples include protecting the samples from the Earth and protecting the Earth from the sample. A testbed will be established to support the design of such a facility and to test the planetary protection protocols. One design option that is being compared to the conventional Biological Safety Level 4 facility is a double walled differential pressure chamber with airlocks and automated equipment for analyzing samples and transferring them from one instrument to another.
Technical Paper

Adaptive EGR Cooler Pressure Drop Estimation

2008-04-14
2008-01-0624
The pre EGR valve pressure is an important measurement for the Diesel engine air handling system. It is commonly used for the EGR flow calculation during engine transient operation. Due to the erosive exhaust gas, an EGR pressure sensor will eventually have gold corrosion resulting in drive-ability issues. Therefore, a software replacement for the EGR pressure sensor is desirable. However, when the EGR valve is on the cold side of the EGR cooler, the accuracy of the EGR pressure estimation deteriorates because of the variability of the pressure drop across the EGR cooler due to EGR cooler fouling. In this paper, an adaptive scheme is developed to improve the accuracy of pre EGR valve pressure estimation in the presence of EGR cooler fouling for diesel engines. The pressure drop across the EGR cooler is shown to be proportional to the velocity pressure of the EGR flow through the cooler.
Technical Paper

Air Charge Estimation in Camless Engines

2001-03-05
2001-01-0581
An electromechanically driven valve train offers unprecedented flexibility to optimize engine operation for each speed load point individually. One of the main benefits is the increased fuel economy resulting from unthrottled operation. The absence of a restriction at the entrance of the intake manifold leads to wave propagation in the intake system and makes a direct measurement of air flow with a hot wire air meter unreliable. To deliver the right amount of fuel for a desired air-fuel ratio, we therefore need an open loop estimate of the air flow based on measureable or commanded signals or quantities. This paper investigates various expressions for air charge in camless engines based on quasi-static assumptions for heat transfer and pressure.
Technical Paper

Air Charge and Residual Gas Fraction Estimation for a Spark-Ignition Engine Using In-Cylinder Pressure

2017-03-28
2017-01-0527
An accurate estimation of cycle-by-cycle in-cylinder mass and the composition of the cylinder charge is required for spark-ignition engine transient control strategies to obtain required torque, Air-Fuel-Ratio (AFR) and meet engine pollution regulations. Mass Air Flow (MAF) and Manifold Absolute Pressure (MAP) sensors have been utilized in different control strategies to achieve these targets; however, these sensors have response delay in transients. As an alternative to air flow metering, in-cylinder pressure sensors can be utilized to directly measure cylinder pressure, based on which, the amount of air charge can be estimated without the requirement to model the dynamics of the manifold.
Technical Paper

Air-Fuel Ratio Dependence of Random and Deterministic Cyclic Variability in a Spark-Ignited Engine

1999-10-25
1999-01-3513
One important design goal for spark-ignited engines is to minimize cyclic variability. A small amount of cyclic variability (slow burns) can produce undesirable engine vibrations. A larger amount of cyclic variability (incomplete burns) leads to increased hydrocarbon consumption/emissions. Recent studies have reported deterministic patterns in cyclic variability under extremely lean (misfiring) operating conditions. The present work is directed toward more realistic non-misfiring conditions. Production engine test results suggest that deterministic patterns in cyclic variability are the consequence of incomplete combustion, hence control algorithms based on the occurrence of these patterns are not expected to be of significant practical value.
Technical Paper

An Adaptive Delay-Compensated PID Air Fuel Ratio Controller

2007-04-16
2007-01-1342
In this work, a discrete,time-based, delay-compensated, adaptive PID control algorithm for air fuel ratio control in an SI engine is presented. The controller operates using feedback from a wide-ranging Universal Exhaust Gas Oxygen (UEGO) sensor situated in the exhaust manifold. Time delay compensation is used to address the difficulties traditionally associated with the relatively long and time-varying time delay in the gas transport process and UEGO sensor response. The delay compensation is performed by computing a correction to the current control move based on the current delay and the corresponding values of the past control moves. The current delay is determined from the measured engine speed and load using a two dimensional map. In order to achieve good servo operation during target changes without compromising regulator performance a two degree of freedom controller design has been developed by adding a pre-filter to the air fuel ratio target.
Journal Article

An Advanced and Comprehensive CAE Approach of Piston Dynamics Studies for Piston Optimal and Robust Design

2011-04-12
2011-01-1404
A successful piston design requires eliminate the following failure modes: structure failure, skirt scuffing and piston unusual noise. It also needs to deliver least friction to improve engine fuel economy and performance. Traditional approach of using hardware tests to validate piston design is technically difficult, costly and time consuming. This paper presents an up-front CAE tool and an analytical process that can systematically address these issues in a timely and cost-effectively way. This paper first describes this newly developed CAE process, the 3D virtual modeling and simulation tools used in Ford Motor Company, as well as the piston design factors and boundary conditions. Furthermore, following the definition of the piston design assessment criteria, several piston design studies and applications are discussed, which were used to eliminate skirt scuffing, reduce piston structure dynamic stresses, minimize skirt friction and piston slapping noise.
Technical Paper

An Experimental Procedure for Simulating an SC03 Emissions Test with Air Conditioner On

2004-03-08
2004-01-0594
In a continuing effort to include real-world emissions in regulatory testing, the USEPA has included air conditioning operation as part of the Supplemental Federal Test Procedure (SFTP). Known as the SC03, these tests require automobile manufacturers to construct and maintain expensive environmental chambers. However, the regulations make allowances for a simulation test, if one can be shown to demonstrate correlation with the SFTP results. We present the results from an experiment on a 1998 Ford sedan, which simulates the heat load of a full environmental chamber. Moreover, the test procedure is simpler and more cost effective. The process essentially involves heating the condenser of the air conditioning system by using the heat of the engine, rather than heating the entire vehicle. The results indicate that if the head pressure is used as a feedback signal to the radiator fan, the load generated by a full environmental chamber can be duplicated.
X