Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Body Structure Joint Optimization: A Cost Driven Approach

1998-09-29
982280
Cross-section properties and joint stiffness properties of the body structure define its characteristic behavior. During the transitional product development process, body structure joints are optimized on an individual basis to reduce cost and weight. The objective of this paper is to present a methodology to analyze the entire body structure design by optimizing each body joint for stiffness and cost. This methodology utilizes joint sensitivity data from FEA, section properties, and cost/weight data. When the joint stiffness status does not meet the target during the design process, the methodology is an effective tool in making decisions regarding the gage increase/decrease for each part constituting body structure joints. Additionally, the methodology has been applied to body structure joints and door upper frame separately.
Technical Paper

Engineering Moveable Glass Window Seals of Automotive Door Using Upfront CAE

1998-09-29
982383
The traditional moveable glass window seal development process has relied heavily on physical prototypes for design verification. Due to frequent styling changes and an overall reduction in design time, physical prototypes for the glass window seals have proven to be inadequate. Utilization of computer aided engineering (CAE) tools is necessary in order to shorten lead time. CAE tools will help to decrease expensive prototyping, free up valuable manufacturing line time, and improve overall quality. A cross functional approach has been applied to expand the scope beyond traditional methods of moveable glass window seal design, such as wedged boarding, into new computerized modeling methods. The CAE was used to address major requirements of the glass window seals including glass velocity, glass stall force, sealing-ability, seal durability, seal assembly, seal appearance, and regulator motor current.
X