Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Constrained Control of UAVs Using Adaptive Anti-windup Compensation and Reference Governors

2009-11-10
2009-01-3097
Gliders can climb to substantial altitudes without employing any on-board energy resources but using proper piloting skills to utilize rising air currents called thermals. Recent experiments on small Unmanned Aerial Vehicles (UAVs) indicate a significant potential to increase both the flight velocity and the range of gliders by means of such maneuvers. In these experiments the velocity to approach a thermal has been recognized as a critical performance factor, and is chosen as the controlled variable. Accurate longitudinal controllers are required to track the optimal flight trajectories generated using path planning algorithms. These controllers are challenged by the presence of uncertain and time-varying aircraft dynamics, gust disturbances, and control actuator limitations.
Journal Article

Launch Performance Optimization of GTDI-DCT Powertrain

2015-04-14
2015-01-1111
A direct trajectory optimization approach is developed to assess the capability of a GTDI-DCT Powertrain, with a Gasoline Turbocharged Direct Injection (GTDI) engine and Dual Clutch Transmission (DCT), to satisfy stringent drivability requirements during launch. The optimization is performed directly on a high fidelity black box powertrain model for which a single simulation of a launch event takes about 8 minutes. To address this challenging problem, an efficient parameterization of the control trajectory using Gaussian kernel functions and a Mesh Adaptive Direct Search optimizer are exploited. The results and observations are reported for the case of clutch torque optimization for launch at normal conditions, at high altitude conditions and at non-zero grade conditions. The results and observations are also presented for the case of simultaneous optimization of multiple actuator trajectories at normal conditions.
X