Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Automatic Transmission Shift Control for Canceling Inertia Torque

2018-04-03
2018-01-1167
A step-ratio automatic transmission is a system of planetary gear sets, wet clutches, hydraulic control system and torque converter to provide the flexibility in gear ratio selection. Gearshifting is realized by the engagement and disengagement of clutches which are commanded by control strategy through the hydraulic actuators. A complex interaction between components results in transient drive shaft torque, affecting shift quality. In particular, it is difficult to achieve fast upshift without inducing a large inertia torque spike due to changing speed ratios. A deep understanding of the system kinematics and dynamics becomes critical to control clutches for fast and smooth gearshifting. This article performs detailed analytical study to explain the upshift behaviors of a 10-speed automatic transmission by deriving the system’s governing equations. These equations show insights of working principles of the transmission and provide a new method to improve shift quality.
Journal Article

Launch Performance Optimization of GTDI-DCT Powertrain

2015-04-14
2015-01-1111
A direct trajectory optimization approach is developed to assess the capability of a GTDI-DCT Powertrain, with a Gasoline Turbocharged Direct Injection (GTDI) engine and Dual Clutch Transmission (DCT), to satisfy stringent drivability requirements during launch. The optimization is performed directly on a high fidelity black box powertrain model for which a single simulation of a launch event takes about 8 minutes. To address this challenging problem, an efficient parameterization of the control trajectory using Gaussian kernel functions and a Mesh Adaptive Direct Search optimizer are exploited. The results and observations are reported for the case of clutch torque optimization for launch at normal conditions, at high altitude conditions and at non-zero grade conditions. The results and observations are also presented for the case of simultaneous optimization of multiple actuator trajectories at normal conditions.
Technical Paper

Piecewise 1st Order Hydraulic Actuator Model for Transient Transmission Simulations

2017-03-28
2017-01-1140
A transmission system model is developed at various complexities in order to capture the transient behaviors in drivability and fuel economy simulations. A large number of model parameters bring more degree of freedom to correlate with vehicular test data. However, in practice, it requires extensive time and effort to tune the parameters to satisfy the model performance requirements. Among the transmission model, a hydraulic clutch actuator plays a critical role in transient shift simulations. It is particularly difficult to tune the actuator model when it is over-parameterized. Therefore, it is of great importance to develop a hydraulic actuator model that is easy to adjust while retaining sufficient complexity for replicating realistic transient behaviors. This paper describes a systematic approach for reducing the hydraulic actuator model into a piecewise 1st order representation based on piston movement.
X