Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Air-Fuel Ratio Dependence of Random and Deterministic Cyclic Variability in a Spark-Ignited Engine

1999-10-25
1999-01-3513
One important design goal for spark-ignited engines is to minimize cyclic variability. A small amount of cyclic variability (slow burns) can produce undesirable engine vibrations. A larger amount of cyclic variability (incomplete burns) leads to increased hydrocarbon consumption/emissions. Recent studies have reported deterministic patterns in cyclic variability under extremely lean (misfiring) operating conditions. The present work is directed toward more realistic non-misfiring conditions. Production engine test results suggest that deterministic patterns in cyclic variability are the consequence of incomplete combustion, hence control algorithms based on the occurrence of these patterns are not expected to be of significant practical value.
Technical Paper

The Volume Acoustic Modes of Spark-Ignited Internal Combustion Chambers

1998-02-23
980893
Acoustic standing waves are excited in internal combustion chambers by both normal combustion and autoignition. The energy in these acoustic modes can be transmitted through the engine block and radiated as high-frequency engine noise. Using finite-element models of two different (four-valve and two-valve) production engine combustion chambers, the mode shapes and relative frequencies of the in-cylinder volume acoustic modes are calculated as a function of crank angle. The model is validated by comparison to spectrograms of experimental time-sampled waveforms (from flush-mounted cylinder pressure sensors and accelerometers) from these two typical production spark-ignited engines.
Technical Paper

Wavelet-Based Visualization, Separation, and Synthesis Tools for Sound Quality of Impulsive Noises

2003-05-05
2003-01-1527
Recent applied mathematics research on the properties of the invertible shift-invariant discrete wavelet transform has produced new ways to visualize, separate, and synthesize impulsive sounds, such as thuds, slaps, taps, knocks, and rattles. These new methods can be used to examine the joint time-frequency characteristics of a sound, to select individual components based on their time-frequency localization, to quantify the components, and to synthesize new sounds from the selected components. The new tools will be presented in a non-mathematical way illustrated by two real-life sound quality problems, extracting the impulsive components of a windshield wiper sound, and analyzing a door closing-induced rattle.
X