Refine Your Search

Search Results

Viewing 1 to 7 of 7
Technical Paper

A Computer Controlled Power Tool for Servicing the Hubble Space Telescope

1996-07-01
961531
The Hubble Space Telescope (HST) was designed to be serviced from the shuttle by astronauts performing extravehicular activities (EVA). During the first HST Servicing Mission (STS-61) two types of power tools were flown, the Power Ratchet Tool (PRT) and the HST Power Tool. Each tool had both benefits and drawbacks. An objective for the second HST servicing mission was to combine the reliability, accuracy, and programmability of the PRT with the pistol grip ergonomics and compactness of the HST Power Tool into a new tool called the EVA Pistol Grip Tool (PGT). The PGT is a self-contained, microprocessor controlled, battery powered, 3/8-inch drive hand-held tool. The PGT may also be used as a non-powered ratchet wrench. Numerous torque, speed, and turn or angle limits can be programmed into the PGT for use during various servicing missions. Batteries Modules are replaceable during ground, Intravehicular Activities (IVA), and EVA operations.
Technical Paper

Comparison of Thermal Performance Characteristics of Ammonia and Propylene Loop Heat Pipes

2000-07-10
2000-01-2406
In this paper, experimental work performed on a breadboard Loop Heat Pipe (LHP) is presented. The test article was built by DCI for the Geoscience Laser Altimeter System (GLAS) instrument on the ICESat spacecraft. The thermal system requirements of GLAS have shown that ammonia cannot be used as the working fluid in this LHP because GLAS radiators could cool to well below the freezing point of ammonia. As a result, propylene was proposed as an alternative LHP working fluid since it has a lower freezing point than ammonia. Both working fluids were tested in the same LHP following a similar test plan in ambient conditions. The thermal performance characteristics of ammonia and propylene LHP's were then compared. In general, the propylene LHP required slightly less startup superheat and less control heater power than the ammonia LHP. The thermal conductance values for the propylene LHP were also lower than the ammonia LHP. Later, the propylene LHP was tested in a thermal vacuum chamber.
Technical Paper

Design Evolution of the Capillary Pumped Loop (CAPL 2) Flight Experiment

1996-07-01
961431
The Capillary Pumped Loop Flight Experiment (CAPL 2) employs a passive two-phase thermal control system that uses the latent heat of vaporization of ammonia to transfer heat over long distances. CAPL was designed as a prototype of the Earth Observing System (EOS) instrument thermal control systems. The purpose of the mission was to provide validation of the system performance in microgravity, prior to implementation on EOS. CAPL 1 was flown on STS-60 in February, 1994, with some unexpected results related to gravitational effects on two-phase systems. Start-up difficulties on CAPL 1 led to a redesign of the experiment (CAPL 2) and a reflight on STS-69 in September of 1995. The CAPL 2 flight was extremely successful and the new “starter pump” design is now baselined for the EOS application. This paper emphasizes the design history, the CAPL 2 design, and lessons learned from the CAPL program.
Technical Paper

Geoscience Laser Altimeter System (Glas) Loop Heat Pipes - An Eventful First Year On-Orbit

2004-07-19
2004-01-2558
Goddard Space Flight Center’s Geoscience Laser Altimeter System (GLAS) is the sole scientific instrument on the Ice, Cloud and land Elevation Satellite (ICESat) that was launched on January 12, 2003 from Vandenberg AFB. A thermal control architecture based on propylene Loop Heat Pipe technology was developed to provide selectable/stable temperature control for the lasers and other electronics over the widely varying mission environment. Following a nominal LHP and instrument start-up, the mission was interrupted with the failure of the first laser after only 36 days of operation. During the 5-month failure investigation, the two GLAS LHPs and the electronics operated nominally, using heaters as a substitute for the laser heat load. Just prior to resuming the mission, following a seasonal spacecraft yaw maneuver, one of the LHPs deprimed and created a thermal runaway condition that resulted in an emergency shutdown of the GLAS instrument.
Technical Paper

In-Flight Thermal Performance of the Geoscience Laser Altimeter System (GLAS) Instrument

2003-07-07
2003-01-2421
The Geoscience Laser Altimeter System (GLAS) instrument is NASA Goddard Space Flight Center's first application of Loop Heat Pipe technology that provides selectable/stable temperature levels for the lasers and other electronics over a widely varying mission environment. GLAS was successfully launched as the sole science instrument aboard the Ice, Clouds, and Land Elevation Satellite (ICESat) from Vandenberg AFB at 4:45pm PST on January 12, 2003. After SC commissioning, the LHPs started easily and have provided selectable and stable temperatures for the lasers and other electronics. This paper discusses the thermal development background and testing, along with details of early flight thermal performance data.
Technical Paper

Performance of the CAPL 2 Flight Experiment

1996-07-01
961432
This paper describes flight test results of the CAPL 2 Flight Experiment, which is a full scale prototype of a capillary pumped loop (CPL) heat transport system to be used for thermal control of the Earth Observing System (EOS-AM) instruments. One unique feature of CAPL 2 is its capillary starter pump cold plate design, which consists of a single capillary starter pump and two heat pipes. The starter pump enhances start-up success due to its self-priming capability, and provides the necessary capillary pumping force for the entire loop. The heat pipes provide the required isothermalization of the cold plate. Flight tests included those pertinent to specific EOS applications and those intended for verifying generic CPL operating characteristics and performance limits. Experimental results confirmed that the starter pump was indeed self-priming and the loop could be successfully started every time.
Technical Paper

The Cryogenic Thermal System Design of NASA’s James Webb Space Telescope (JWST) Integrated Science Instrument Module (ISIM)

2005-07-11
2005-01-3041
The thermal design and modeling of NASA’s James Webb Space Telescope (JWST) Integrated Science Instrument Module (ISIM) is described. The ISIM utilizes a series of large radiators to passively cool its three near-infrared instruments to below 37 Kelvin. A single mid-infrared instrument is further cooled to below 7 Kelvin via stored solid Hydrogen (SH2). These complex cooling requirements, combined with the JWST concept of a large deployed aperture optical telescope, also passively cooled to below 50 Kelvin, makes JWST one of the most unique and thermally challenging space missions flown to date. Currently in the preliminary design stage and scheduled for launch in 2010, NASA’s JWST is expected to replace the Hubble Space Telescope as the premier space based astronomical observatory.
X