Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

A More Completely Defined CELSS

1994-06-01
941292
A CELSS has been defined based on current or near-term technology. The CELSS was sized to support the metabolic load of four people on the Moon for ten years. A metabolic load of 14 MJ/person/day is assumed, including an average of 2.6 hr of EVA/person/day. Close to 100% closure of water, and oxygen, and 85% closure of the food loop is assumed. With 15% of the calories supplied from Earth, this should provide adequate dietary variety for the crew along with vitamin and mineral requirements. Other supply and waste removal requirements are addressed. The basic shell used is a Space Station Freedom 7.3 m (24 ft) module. This is assumed to be buried in regolith to provide protection from radiation, meteoroids, and thermal extremes. A solar dynamic power system is assumed, with a design life of 10 years delivering power at 368 kWh/kg. Initial estimates of size are that 73 m2 of plant growth area are required, giving a plant growth volume of about 73 m3.
Technical Paper

Comparison Studies of Candidate Nutrient Delivery Systems for Plant Cultivation in Space

1997-07-01
972304
A reliable nutrient delivery system is essential for long-term cultivation of plants in space. At the Kennedy Space Center, a series of ground-based tests are being conducted to compare candidate plant nutrient delivery systems for space. To date, our major focus has concentrated on the Porous Tube Plant Nutrient Delivery System, the ASTROCULTURE™ System, and a zeoponic plant growth substrate. The merits of each system are based upon the performance of wheat supported over complete growth cycles. To varying degrees, each system supported wheat biomass production and showed distinct patterns for plant nutrient uptake and water use.
Technical Paper

International Space Station Environmental Control and Life Support System - Verification and Test Program for the United States Airlock Element

2000-07-10
2000-01-2295
The United States Airlock provides the capability to sustain life in the habitable environment of the International Space Station (ISS) and also supports the Extravehicular Activities (EVA) by providing a means for the crew to translate from the pressurized station environment to space vacuum. The Airlock consists of the Crewlock and Equipment Lock pressurized volumes, two high-pressure oxygen and two high-pressure nitrogen gas tanks. The Airlock Environmental Control and Life Support (ECLS) System consists of the following subsystems: Atmosphere Control and Supply (ACS), Atmosphere Revitalization (AR), Fire Detection and Suppression (FDS) and Temperature and Humidity Control (THC). This paper provides an overview of the Airlock ECLS System and details the verification and testing methodologies utilized during the Qualification test program.
Technical Paper

Rapid Microbial Analysis during Simulated Surface EVA at Meteor Crater: Implications for Human Exploration of the Moon and Mars

2006-07-17
2006-01-2006
Procedures for rapid microbiological analysis were performed during simulated surface extra-vehicular activity (EVA) at Meteor Crater, Arizona. The fully suited operator swabbed rock (‘unknown’ sample), spacesuit glove (contamination control) and air (negative control). Each swab sample was analyzed for lipopolysaccharide (LPS) and β-1, 3-glucan within 10 minutes by the handheld LOCAD PTS instrument, scheduled for flight to ISS on space shuttle STS-116. This simulated a rapid and preliminary ‘life detection’ test (with contamination control) that a human could perform on Mars. Eight techniques were also evaluated for their ability to clean and remove LPS and β-1, 3-glucan from five surface materials of the EVA Mobility Unit (EMU). While chemical/mechanical techniques were effective at cleaning smooth surfaces (e.g. RTV silicon), they were less so with porous fabrics (e.g. TMG gauntlet).
X