Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Assessing Biofidelity of the Test Device for Human Occupant Restraint (THOR) Against Historic Human Volunteer Data

2013-11-11
2013-22-0018
The National Aeronautics and Space Administration (NASA) is interested in characterizing the responses of THOR (test device for human occupant restraint) anthropometric test device (ATD) to representative loading acceleration pulse s. Test conditions were selected both for their applicability to anticipated NASA landing scenarios, and for comparison to human volunteer data previously collected by the United States Air Force (USAF). THOR impact testing was conducted in the fore-to-aft frontal (-x) and in the upward spinal (-z) directions with peak sled accelerations ranging from 8 to 12 G and rise times of 40, 70, and 100ms. Each test condition was paired with historical huma n data sets under similar test conditions that were also conducted on the Horizontal Impulse Accelerator (HIA). A correlation score was calculated for each THOR to human comparison using CORA (CORrelation and Analysis) software.
Technical Paper

Development of Airframe Design Technology for Crashworthiness

1973-02-01
730319
This paper describes the NASA portion of a joint FAA-NASA General Aviation Crashworthiness Program leading to the development of improved crashworthiness design technology. The objectives of the program are to develop analytical technology for predicting crashworthiness of structures, provide design improvements, and perform full-scale crash tests. The analytical techniques which are being developed both in-house and under contract are described and typical results from these analytical programs are shown. In addition, the full-scale testing facility and test program are discussed.
Technical Paper

Light Aircraft Crash Safety Program

1974-02-01
740353
The Federal Aviation Administration (FAA) and the National Aeronautics and Space Administration (NASA) have joined forces in a General Aviation Crashworthiness Program. This paper describes the research and development tasks of the program which are the responsibility of NASA. NASA is embarked upon research and development tasks aimed at providing the general aviation industry with a reliable crashworthy airframe design technology. The goals of the NASA program are: reliable analytical techniques for predicting the nonlinear behavior of structures; significant design improvements of airframes; and simulated full-scale crash test data. The analytical tools will include both simplified procedures for estimating energy absorption characteristics and more complex computer programs for analysis of general airframe structures under crash loading conditions.
Technical Paper

Overview of Structural Behavior and Occupant Responses from a Crash Test of a Composite Airplane

1995-05-01
951168
As part of NASA's composite structures crash dynamics research, a general aviation aircraft with composite wing, fuselage and empennage (but with metal subfloor structure) was crash tested at the NASA Langley Research Center Impact Dynamics Research Facility. The test was conducted to determine composite aircraft structural behavior for crash loading conditions and to provide a baseline for a similar aircraft test with a modified subfloor. Structural integrity and cabin volume were maintained. Lumbar loads for dummy occupants in energy absorbing seats were substantially lower than those in standard aircraft seats; however, loads in the standard seats were much higher than those recorded under similar conditions for an all-metallic aircraft.
X