Refine Your Search

Search Results

Viewing 1 of 1
Technical Paper

Theoretical Investigation for the Effects of Sweep, Leading-Edge Geometry, and Spanwise Pressure Gradients on Transition and Wave Drag at Transonic, and Supersonic Speed with Experimental Correlations

1988-10-01
881484
The results of a design study of a Hybrid Laminar Flow Control (HLFC) wing at transonic speed and correlative studies for finite, swept supersonic wings are discussed in this paper. Transonic HLFC wing was designed such as to obtain laminar laminar flow on the the wing upper surface for X/C of 0.6 and with suction applied from the leading edge to 60% of the chord and with suction applied from just aft of the leading edge to twenty-five percent of the chord. New theoretical methods have been recently developed for predicting pressure distributions, supersonic wave drag and transition location for finite swept wings at transonic and supersonic Mach number conditions and are illustrative computations are given. Results for laminar and turbulent boundary-layer parameters consisting of the displacement effects and skin friction drag are also presented.
X