Refine Your Search

Search Results

Viewing 1 of 1
Technical Paper

Development of a Novel Flame Propagation Model (UCFM: Universal Coherent Flamelet Model) for SI Engines and Its Application to Knocking Prediction

2005-04-11
2005-01-0199
Combustion in engines involves very complicated phenomena (including flame propagation and knocking), which are strongly affected by engine speed, load and turbulence intensity in the combustion chamber. The aim of this study was to develop a flame propagation model and a knocking prediction technique applicable to various engine operating conditions, including engine speed and in-cylinder turbulence intensity. A flame propagation model (UCFM) has been developed that improved the Coherent Flamelet Model by considering flame growth both in terms of the turbulent flame kernel and laminar flame kernel. A knocking prediction model was developed by implementing the Livengood-Wu integral as the autoignition model. The combined model allows evaluation of both where and when autoignition occurs in a real shape combustion chamber. A comparison of the measured and calculated time for the occurrence of knocking shows good agreement for various operating conditions.
X