Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

50,000km On-Road Durability Test of Common-Rail Vehicle with 20% Blend of High Quality Palm Biodiesel (H-FAME)

2016-03-27
2016-01-1736
The effects of high quality biodiesel, namely, partially Hydrogenated Fatty Acid Methyl Ester or H-FAME, on 50,000km on-road durability test of unmodified common-rail vehicle have been investigated. Thailand brand new common-rail light duty vehicle, Isuzu D-Max Extended cab, equipped with 4JK1-TCX engine (DOHC 4-cylinder 2.5L, M/T 4×2, Euro IV emission) was chosen to undergo on-road test composed of well-mixed types of mountain, suburb and urban road conditions over the entire 50,000km. Palm-derived high quality biodiesel, H-FAME, conforming to WWFC (worldwide fuel charter) specification, was blended with normal diesel (Euro IV) at 20% (v/v) as tested fuel. Engine performance (torque and power), emission (CO, NOx, HC+NOx and PM), fuel consumption and dynamic response (0-100km acceleration time and maximum velocity) were analyzed at initial, middle and final distance; whereas, used lube oil analysis was conducted every 10,000km.
Technical Paper

Combustion Characteristics and Particulate Matter Number Size Study of Ethanol and Diesel Reactivity Controlled Compression Ignition Engine

2017-09-04
2017-24-0143
The main aim of this work is to characterize the combustion phenomena and particulate matter in nano-size from the reactivity controlled compression ignition (RCCI) engine using neat hydrous ethanol as a low reactivity fuel. A four-cylinder diesel engine fueled with diesel (the volumetric blend of 95% petroleum diesel and 5% palm-based biodiesel) was operated on low and medium loads at 2,500 rpm without main diesel fuel injection modification and exhaust gas recirculation. Ethanol was injected at 1 bar pressure into the intake manifold while the w/w ratios of ethanol:diesel were varied between 0 and 0.77. An engine indicating system composed of an in-cylinder pressure transducer and a shaft encoder was used to investigate combustion characteristics using the first law of thermodynamics. A Scanning Mobility Particle Sizer and an Optical Particle Sizer were used to determine the particle number concentration and distribution over nano-size range.
X