Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

A Deterministic Multivariate Clustering Method for Drive Cycle Generation from In-Use Vehicle Data

2021-04-06
2021-01-0395
Accurately characterizing vehicle drive cycles plays a fundamental role in assessing the performance of new vehicle technologies. Repeatable, short duration representative drive cycles facilitate more informed decision making, resulting in improved test procedures and more successful vehicle designs. With continued growth in the deployment of onboard telematics systems employing global positioning systems (GPS), large scale, low cost collection of real-world vehicle drive cycle data has become a reality. As a result of these technological advances, researchers, designers, and engineers are no longer constrained by lack of operating data when developing and optimizing technology, but rather by resources available for testing and simulation. Experimental testing is expensive and time consuming, therefore the need exists for a fast and accurate means of generating representative cycles from large volumes of real-world driving data.
Journal Article

A New Automotive Air Conditioning System Simulation Tool Developed in MATLAB/Simulink

2013-04-08
2013-01-0850
Accurate evaluation of vehicles' transient total power requirement helps achieving further improvements in vehicle fuel efficiency. When operated, the air-conditioning (A/C) system is the largest auxiliary load on a vehicle, therefore accurate evaluation of the load it places on the vehicle's engine and/or energy storage system is especially important. Vehicle simulation models, such as "Autonomie," have been used by OEMs to evaluate vehicles' energy performance. However, the load from the A/C system on the engine or on the energy storage system has not always been modeled in sufficient detail. A transient A/C simulation tool incorporated into vehicle simulation models would also provide a tool for developing more efficient A/C systems through a thorough consideration of the transient A/C system performance. The dynamic system simulation software MATLAB/Simulink® is frequently used by vehicle controls engineers to develop new and more efficient vehicle energy system controls.
Technical Paper

A Techno-Economic Analysis of BEV Service Providers Offering Battery Swapping Services

2013-04-08
2013-01-0500
Battery electric vehicles (BEVs) offer the potential to reduce both oil imports and greenhouse gas emissions, but high upfront costs, battery-limited vehicle range, and concern over high battery replacement costs may discourage potential buyers. A subscription model in which a service provider owns the battery and supplies access to battery swapping infrastructure could reduce upfront and battery replacement costs with a predictable monthly fee, while expanding BEV range. Assessing the costs and benefits of such a proposal are complicated by many factors, including customer drive patterns, the amount of required infrastructure, battery life, etc. The National Renewable Energy Laboratory has applied its Battery Ownership Model to compare the economics and utility of BEV battery swapping service plan options to more traditional direct ownership options.
Journal Article

Advancing Platooning with ADAS Control Integration and Assessment Test Results

2021-04-06
2021-01-0429
The application of cooperative adaptive cruise control (CACC) to heavy-duty trucks known as truck platooning has shown fuel economy improvements over test track ideal driving conditions. However, there are limited test data available to assess the performance of CACC under real-world driving conditions. As part of the Cummins-led U.S. Department of Energy Funding Opportunity Announcement award project, truck platooning with CACC has been tested under real-world driving conditions and the results are presented in this paper. First, real-world driving conditions are characterized with the National Renewable Energy Laboratory’s Fleet DNA database to define the test factors. The key test factors impacting long-haul truck fuel economy were identified as terrain and highway traffic with and without advanced driver-assistance systems (ADAS).
Technical Paper

Alternative Fuel Vehicle Fleet Buyer's Guide

1999-05-03
1999-01-1510
Fleet managers need a tool to assist them in assessing their need to comply with EPAct and to provide them with the ability to obtain information that will allow them to make alternative fuel vehicle purchasing decisions. This paper will describe the Web-based tool that will inform a fleet manager, based on their geographic location, the type of fleet they own or operate, and the number and types of vehicles in their fleet, whether or not they need to meet the requirements of EPAct, and, if so, the percentage of new vehicle purchases needed to comply with the law. The tool provides detailed specifications on available OEM alternative fuel vehicles, including the purchase cost of the vehicles, fuel and fuel system characteristics, and incentives and rebates surrounding the purchase of each vehicle. The full set of federal, state, and local incentives is made available through the tool, as well as detailed access to refueling site and dealership locations.
Technical Paper

Assessing the National Off-Cycle Benefits of 2-Layer HVAC Technology Using Dynamometer Testing and a National Simulation Framework

2023-04-11
2023-01-0942
Some CO2-reducing technologies have real-world benefits not captured by regulatory testing methods. This paper documents a two-layer heating, ventilation, and air-conditioning (HVAC) system that facilitates faster engine warmup through strategic increased air recirculation. The performance of this technology was assessed on a 2020 Hyundai Sonata. Empirical performance of the technology was obtained through dynamometer tests at Argonne National Laboratory. Performance of the vehicle across multiple cycles and cell ambient temperatures with the two-layer technology active and inactive indicated fuel consumption reduction in nearly all cases. A thermally sensitive powertrain model, the National Renewable Energy Laboratory’s FASTSim Hot, was calibrated and validated against vehicle testing data. The developed model included the engine, cabin, and HVAC system controls.
Technical Paper

Bayesian Parameter Estimation for Heavy-Duty Vehicles

2017-03-28
2017-01-0528
Accurate vehicle parameters are valuable for design, modeling, and reporting. Estimating vehicle parameters can be a very time-consuming process requiring tightly-controlled experimentation. This work describes a method to estimate vehicle parameters such as mass, coefficient of drag/frontal area, and rolling resistance using data logged during standard vehicle operation. The method uses a Monte Carlo method to generate parameter sets that are fed to a variant of the road load equation. The modeled road load is then compared to the measured load to evaluate the probability of the parameter set. Acceptance of a proposed parameter set is determined using the probability ratio to the current state, so that the chain history will give a distribution of parameter sets. Compared to a single value, a distribution of possible values provides information on the quality of estimates and the range of possible parameter values. The method is demonstrated by estimating dynamometer parameters.
Journal Article

Climate Control Load Reduction Strategies for Electric Drive Vehicles in Cold Weather

2016-04-05
2016-01-0262
When operated, the cabin climate control system is the largest auxiliary load on a vehicle. This load has significant impact on fuel economy for conventional and hybrid vehicles, and it drastically reduces the driving range of all-electric vehicles (EVs). Heating is even more detrimental to EV range than cooling because no engine waste heat is available. Reducing the thermal loads on the vehicle climate control system will extend driving range and increase the market penetration of EVs. Researchers at the National Renewable Energy Laboratory have evaluated strategies for vehicle climate control load reduction with special attention toward grid-connected electric vehicles. Outdoor vehicle thermal testing and computational modeling were used to assess potential strategies for improved thermal management and to evaluate the effectiveness of thermal load reduction technologies. A human physiology model was also used to evaluate the impact on occupant thermal comfort.
Technical Paper

Climate Control Load Reduction Strategies for Electric Drive Vehicles in Warm Weather

2015-04-14
2015-01-0355
Passenger compartment climate control is one of the largest auxiliary loads on a vehicle. Like conventional vehicles, electric vehicles (EVs) require climate control to maintain occupant comfort and safety, but cabin heating and air conditioning have a negative impact on driving range for all-electric vehicles. Range reduction caused by climate control and other factors is a barrier to widespread adoption of EVs. Reducing the thermal loads on the climate control system will extend driving range, thereby reducing consumer range anxiety and increasing the market penetration of EVs. Researchers at the National Renewable Energy Laboratory have investigated strategies for vehicle climate control load reduction, with special attention toward EVs. Outdoor vehicle thermal testing was conducted on two 2012 Ford Focus Electric vehicles to evaluate thermal management strategies for warm weather, including solar load reduction and cabin pre-ventilation.
Journal Article

Comparison of the Accuracy and Speed of Transient Mobile A/C System Simulation Models

2014-04-01
2014-01-0669
The operation of air conditioning (A/C) systems is a significant contributor to the total amount of fuel used by light-and heavy-duty vehicles. Therefore, continued improvement of the efficiency of these mobile A/C systems is important. Numerical simulation has been used to reduce the system development time and to improve the electronic controls, but numerical models that include highly detailed physics run slower than desired for carrying out vehicle-focused drive cycle-based system optimization. Therefore, faster models are needed even if some accuracy is sacrificed. In this study, a validated model with highly detailed physics, the “Fully-Detailed” model, and two models with different levels of simplification, the “Quasi-Transient” and the “Mapped-Component” models, are compared. The Quasi-Transient model applies some simplifications compared to the Fully-Detailed model to allow faster model execution speeds.
Technical Paper

Contribution of Road Grade to the Energy Use of Modern Automobiles Across Large Datasets of Real-World Drive Cycles

2014-04-01
2014-01-1789
Understanding the real-world power demand of modern automobiles is of critical importance to engineers using modeling and simulation in the design of increasingly efficient powertrains. Increased use of global positioning system (GPS) devices has made large-scale data collection of vehicle speed (and associated power demand) a reality. While the availability of real-world GPS data has improved the industry's understanding of in-use vehicle power demand, relatively little attention has been paid to the incremental power requirements imposed by road grade. This analysis quantifies the incremental efficiency impacts of real-world road grade by appending high-fidelity elevation profiles to GPS speed traces and performing a large simulation study. Employing a large, real-world dataset from the National Renewable Energy Laboratory's Transportation Secure Data Center, vehicle powertrain simulations are performed with and without road grade under five vehicle models.
Technical Paper

Cost Comparison of Wind Energy Delivered as Electricity or Hydrogen for Vehicles

2013-04-08
2013-01-1038
A simple cost analysis framework compares hydrogen and electricity as energy carriers delivering wind energy to light-duty vehicles (LDVs). We compare four wind energy pathways within a 2040-2050 timeframe and at large scale: a dedicated electricity transmission pathway and three distinct wind-hydrogen delivery pathways. Our results suggest that wind-hydrogen pathways will tend to be more costly than pure electricity transmission pathways on a per-mile driven cost basis ($/mile), but to a greater or lesser degree depending upon the pathway. The additional cost could be warranted to the degree that the hydrogen pathway adds value to consumers through full performance fuel cell electric vehicles (FCEV) compared to plug-in electric vehicles (PEVs), or through reduced variability in wind energy supply. If these benefits add value beyond the incremental costs suggested by our simple cost framework, some shift toward co-production or even dedicated hydrogen wind farms may be warranted.
Technical Paper

Decision Tree Regression to Identify Representative Road Sections for Evaluating Performance of Connected and Automated Class 8 Tractors

2021-04-06
2021-01-0187
Currently, connected and autonomous vehicle (CAV) technology is being developed for Class 8 tractor trucks aimed at improved safety and fuel economy and reduced CO2 emissions. Despite extensive efforts conducted across the world, the reported efficiency gains were varied from different research groups, raising concerns about the fidelity of models, the performance of control, and the effectiveness of the experimental validation. One root cause for this variation stems from the fact that the efficiency gain obtained from the CAV is sensitive to real-world conditions, including surrounding traffic and road grade. This study presents an approach aimed at identifying representative public road sections and facilitating CAV research from this perspective. By employing the decision tree regression (DTR) method to the Fleet DNA database, the most representative road sections can be identified.
Technical Paper

Design and Transient Simulation of Vehicle Air Conditioning Systems

2001-05-14
2001-01-1692
This paper describes the need for dynamic (transient) simulation of automotive air conditioning systems, the reasons why such simulations are challenging, and the applicability of a general purpose off-the-shelf thermohydraulic analyzer to answer such challenges. An overview of modeling methods for the basic components are presented, along with relevant approximations and their effect on speed and accuracy of the results.
Technical Paper

Determining Off-cycle Fuel Economy Benefits of 2-Layer HVAC Technology

2018-04-03
2018-01-1368
This work presents a methodology to determine the off-cycle fuel economy benefit of a 2-Layer HVAC system which reduces ventilation and heat rejection losses of the heater core versus a vehicle using a standard system. Experimental dynamometer tests using EPA drive cycles over a broad range of ambient temperatures were conducted on a highly instrumented 2016 Lexus RX350 (3.5L, 8 speed automatic). These tests were conducted to measure differences in engine efficiency caused by changes in engine warmup due to the 2-Layer HVAC technology in use versus the technology being disabled (disabled equals fresh air-considered as the standard technology baseline). These experimental datasets were used to develop simplified response surface and lumped capacitance vehicle thermal models predictive of vehicle efficiency as a function of thermal state.
Technical Paper

Development of a Vehicle-Level Simulation Model for Evaluating the Trade-Off between Various Advanced On-Board Hydrogen Storage Technologies for Fuel Cell Vehicles

2012-04-16
2012-01-1227
One of the most critical elements in engineering a hydrogen fuel cell vehicle is the design of the on-board hydrogen storage system. Because the current compressed-gas hydrogen storage technology has several key challenges, including cost, volume and capacity, materials-based storage technologies are being evaluated as an alternative approach. These materials-based hydrogen storage technologies include metal hydrides, chemical hydrides, and adsorbent materials, all of which have drawbacks of their own. To optimize the engineering of storage systems based on these materials, it is critical to understand the impacts these systems will have on the overall vehicle system performance and what trade-offs between the hydrogen storage systems and the vehicle systems might exist that allow these alternative storage approaches to be viable.
Technical Paper

Dish/Stirling Hybrid-Receiver Sub-Scale Tests and Full-Scale Design

1999-08-02
1999-01-2561
We have designed and tested a prototype dish/Stirling hybrid-receiver combustion system. The system consists of a pre-mixed natural-gas burner heating a pin-finned sodium heat pipe. The design emphasizes simplicity, low cost, and ruggedness. Our test was on a 1/6th-scale device, with a nominal firing rate of 18kWt, a power throughput of 13kWt, and a sodium vapor temperature of 750°C. The air/fuel mixture was electrically preheated to 640°C to simulate recuperation. The test rig was instrumented for temperatures, pressures, flow rates, overall leak rate, and exhaust emissions. The data verify our burner and heat-transfer models. Performance and post-test examinations validate our choice of materials and fabrication methods. Based on the 1/6th -scale results, we are designing a full-scale hybrid receiver.
Technical Paper

Example of a Prototype Lightweight Solar Array and the Three Promising Technologies It Incorporates: Copper Indium DiSelenide (CIS) Thin-Film Photovoltaics, Smart Mechanisms Employing Shape Memory, and Multifunctional Structures

1999-08-02
1999-01-2550
As the size of spacecraft decreases, the contribution of the power subsystem to the overall spacecraft weight significantly increases. This paper will focus on describing a prototype solar array utilizing three promising technologies to significantly reduce weight, deploy with low shock, and increase packaging efficiency of the solar power system. These technologies are: Copper Indium DiSelenide (CIS) Thin-Film Photovoltaics, Smart Mechanisms Employing Shape Memory, and Multifunctional Structures. Recent advances in shape memory alloy devices, ultralight composites, along with thin-film copper indium diselenide (CIS or CuInSe2) photovoltaics (PV), have shown the potential of providing solar array systems with overall array specific power of >100 W/kg. This results in solar arrays that are a factor of 5 lighter than the current state-of-the-practice, and a factor of 3 lighter than the state-of-the-art.
Technical Paper

Exploring Telematics Big Data for Truck Platooning Opportunities

2018-04-03
2018-01-1083
NREL completed a temporal and geospatial analysis of telematics data to estimate the fraction of platoonable miles traveled by class 8 tractor trailers currently in operation. This paper discusses the value and limitations of very large but low time-resolution data sets, and the fuel consumption reduction opportunities from large scale adoption of platooning technology for class 8 highway vehicles in the US based on telematics data. The telematics data set consist of about 57,000 unique vehicles traveling over 210 million miles combined during a two-week period. 75% of the total fuel consumption result from vehicles operating in top gear, suggesting heavy highway utilization. The data is at a one-hour resolution, resulting in a significant fraction of data be uncategorizable, yet significant value can still be extracted from the remaining data. Multiple analysis methods to estimate platoonable miles are discussed.
Technical Paper

Fuel Used for Vehicle Air Conditioning: A State-by-State Thermal Comfort-Based Approach

2002-06-03
2002-01-1957
How much fuel does vehicle air conditioning actually use? This study attempts to answer that question to determine the national and state-by-state fuel use impact seen by using air conditioning in light duty gasoline vehicles. The study used data from US cities, representative of averages over the past 30 years, whose temperature, incident radiation, and humidity varied through time of day and day of year. National surveys estimated when people drive their vehicles during the day and throughout the year. A simple thermal comfort model based on Fanger's heat balance equations determined the percentage of time that a driver would use the air conditioning based on the premise that if a person were dissatisfied with the thermal environment, they would turn on the air conditioning. Vehicle simulations for typical US cars and trucks determined the fuel economy reduction seen with AC use.
X