Refine Your Search

Topic

Author

Search Results

Technical Paper

Advanced Real-time Aerodynamic Model Identification Technique

2001-09-11
2001-01-2965
The Flight Research Laboratory (FRL), National Research Council (NRC) of Canada is currently developing an in-flight aircraft aerodynamic model identification technique that determines the small perturbation model at a given test condition. Initial demonstrations have been carried out using the NRC Falcon 20 research aircraft. An efficient system architecture, in terms of both software algorithms and hardware processing, has been designed to meet the stringent near real-time requirements of an in-flight system. As well, novel hardware and software techniques are being applied to the calibration and measurement of the fundamental in-flight parameters, such as air data. The small perturbation models are then combined to develop a global model of the aircraft that is validated by comparing the model response to flight data. The maneuvers were performed according to the FAA Acceptance Test Guide (ATG).
Technical Paper

Aircraft Performance Degradation - the Effects of Inflight Icing upon Lift, Drag and Propulsive Efficiency

2011-06-13
2011-38-0073
Data is presented from a number of flight research aircraft, which have been involved in the research of the effects of inflight icing, in a variety of atmospheric supercooled droplet and mixed-phase icing environmental conditions. The aircraft Types considered cover both Pneumatic and Thermal Ice Protection Systems (IPS). Icing includes supercooled droplet impact icing upon airframe and propeller blades and cold-soaked frost icing. The drag effects of inflight icing, from mixed-phase small and large droplets encountered during the course of SALPEX cloud physics research operations, upon a Fokker F-27 turboprop transport aircraft, have been analyzed. Furthermore, during the course of AIRS 1.5 and AIRS II inflight icing flight research operations, the NRC Convair conducted aerodynamic characterization maneuvers, following and during icing accretion in a wide range of environmental conditions of altitude, air temperature, LWC and droplet spectra.
Technical Paper

An Autonomous Steering Control Scheme for Articulated Heavy Vehicles Using - Model Predictive Control Technique

2023-04-11
2023-01-0658
This article presents an autonomous steering control scheme for articulated heavy vehicles (AHVs). Despite economic and environmental benefits in freight transportation, lateral stability is always a concern for AHVs in high-speed highway operations due to their multi-unit vehicle structures, and high centers of gravity (CGs). In addition, North American harsh winter weather makes the lateral stability even more challenging. AHVs often experience amplified lateral motions of trailing vehicle units in high-speed evasive maneuvers. AHVs represent a 7.5 times higher risk than passenger cars in highway operation. Human driver errors cause about 94% of traffic collisions. However, little attention has been paid to autonomous steering control of AHVs.
Journal Article

An Investigation of the Influence of Close-Proximity Traffic on the Aerodynamic Drag Experienced by Tractor-Trailer Combinations

2019-04-02
2019-01-0648
Recent research to investigate the aerodynamic-drag reduction associated with truck platooning systems has begun to reveal that surrounding traffic has a measurable impact on the aerodynamic performance of heavy trucks. A 1/15-scale wind-tunnel study was undertaken to measure changes to the aerodynamic drag experienced by heavy trucks in the presence of upstream traffic. The results, which are based on traffic conditions with up to 5 surrounding vehicles in a 2-lane configuration and consisting of 3 vehicle shapes (compact sedans, SUVs, and a medium-duty truck), show drag reductions of 1% to 16% for the heavy truck model, with the largest reductions of the same order as those experienced in a truck-platooning scenario. The data also reveal that the performance of drag-reduction technologies applied to the heavy-truck model (trailer side-skirts and a boat-tail) demonstrate different performance when applied to an isolated vehicle than to conditions with surrounding traffic.
Journal Article

Analysis of Residual Stress Profiles in the Cylinder Web Region of an As-Cast V6 Al Engine Block with Cast-In Fe Liners Using Neutron Diffraction

2011-04-12
2011-01-0036
Continuous efforts to develop a lightweight alloy suitable for the most demanding applications in automotive industry resulted in a number of advanced aluminum (Al) and magnesium alloys and manufacturing routes. One example of this is the application of 319 Al alloy for production of 3.6L V6 gasoline engine blocks. Aluminum is sand cast around Fe-liner cylinder inserts, prior to undergoing the T7 heat treatment process. One of the critical factors determining the quality of the final product is the type, level, and profile of residual stresses along the Fe liners (or extent of liner distortion) that are always present in a cast component. In this study, neutron diffraction was used to characterize residual stresses along the Al and the Fe liners in the web region of the cast engine block. The strains were measured both in Al and Fe in hoop, radial, and axial orientations. The stresses were subsequently determined using generalized Hooke's law.
Technical Paper

Analysis of the Unsteady Wakes of Heavy Trucks in Platoon Formation and Their Potential Influence on Energy Savings

2021-04-06
2021-01-0953
The authors present transient wind velocity measurements from two successive, well-documented truck platooning track-test campaigns to assess the wake-shedding behavior experienced by trucks in various platoon formations. Utilizing advanced analytics of data from fast-response (100-200-Hz) multi-hole pressure probes, this analysis examines aerodynamic flow features and their relationship to energy savings during close-following platoon formations. Applying Spectral analysis to the wind velocity signals, we identify the frequency content and vortex-shedding behavior from a forward truck trailer, which dominates the flow field encountered by the downstream trucks. The changes in dominant wake-shedding frequencies correlate with changes to the lead and follower truck fuel savings at short separation distances.
Technical Paper

Assessment of the Dynamic Stability Characteristics of the Bell Model M427 Helicopter Using Parameter Estimation Technology

2002-11-05
2002-01-2916
A joint program between Bell Helicopter Textron Canada and the Flight Research Laboratory of Canada's National Research Council was initiated to address the aerodynamic modelling challenges of the Bell M427 helicopter. The primary objective was to use the NRC parameter estimation technique, based on modified maximum likelihood estimation (MMLE), on a limited set of flight test data to efficiently develop an accurate forward-flight mathematical model of the Bell M427. The effect of main rotor design changes on the aircraft stability characteristics was also investigated, using parameter estimation. This program has demonstrated the feasibility of creating a forward-flight rotorcraft aerodynamic mathematical model based on time-domain parameter estimation, and the ability of a 6 degree-of-freedom MMLE model to accurately document the impact of minor rotor modifications on aircraft stability.
Technical Paper

Carded Recycled Carbon Fiber Mats for the Production of Thermoset Composites via Infusion/Compression Molding

2013-09-17
2013-01-2208
The use of carbon fiber reinforced thermoset composites has doubled in the last decade raising questions about the waste generated from manufacturing and at end-of-life, especially in the aircraft industry. In this study, 2.5 cm long carbon fibers were recovered from thermoset composite waste using a commercial scale pyrolysis process. Scanning electron microscopy, density measurements, single filament tensile testing as well as micro-droplet testing were performed to characterize the morphology, mechanical properties, and surface adhesion of the fibers. The recycled fibers appeared to be mostly undamaged and clean, exhibiting comparable mechanical properties to virgin carbon fibers. A carding process followed by an ultrasound treatment produced randomly aligned recycled fiber mats. These mats were used to fabricate composite plates, with fiber volume fractions up to 40 %, by infusion / compression molding.
Technical Paper

Characterization of Methane Emissions from a Natural Gas-Fuelled Marine Vessel under Transient Operation

2021-04-06
2021-01-0631
Natural gas is an increasingly attractive fuel for marine applications due to its abundance, lower cost, and reduced CO2, NOx, SOx, and particulate matter (PM) emissions relative to conventional fuels such as diesel. Methane in natural gas is a potent greenhouse gas (GHG) and must be monitored and controlled to minimize GHG emissions. In-use GHG emissions are commonly estimated from emission factors based on steady state engine operation, but these do not consider transient operation which has been noted to affect other pollutants including PM and NOx. This study compares methane emissions from a coastal marine vessel during transient operation to those expected based on steady state emission factors. The exhaust methane concentration from a diesel pilot-ignited, low pressure natural gas-fuelled engine was measured with a wavelength modulation spectroscopy system, during periods of increasing and decreasing engine load (between 3 and 90%).
Technical Paper

Comparison of Freeze-Out versus Grind-Out Ice Crystals for Generating Ice Accretion Using the ICE-MACR

2023-06-15
2023-01-1418
Since the introduction of ice crystal icing certification requirements [1], icing facilities have played an important role in demonstrating compliance of aircraft air data probes, engine probes, and increasingly, of turbine engines. Most sea level engine icing facilities use the freezing-out of a water spray to simulate ice crystal icing conditions encountered at altitude by an aircraft in flight. However, there are notable differences in the ice particles created by freeze-out versus those observed at altitude [2, 3, 4]. Freeze-out crystals are generally spherical as compared to altitude crystals which have variable crystalline shapes. Additionally, freeze-out particles may not completely freeze in their centres, creating a combination of super-cooled liquid and ice impacting engine hardware. An alternative method for generating ice crystals in a test facility is the grinding of ice blocks or cubes to create irregular shaped crystals.
Journal Article

Considerations for the Wind Tunnel Simulation of Tractor-Trailer Combinations: Correlation of Full- and Half-Scale Measurements

2013-09-24
2013-01-2456
The 9-meter wind tunnel of the National Research Council (NRC) of Canada is commonly employed in testing of class 8 tractors at full- and model-scales. In support of this work a series of tests of an identical model at full- and half-scale were performed to investigate some of the effects resulting from simulation compromises. Minimum Reynolds Number considerations drive the crucial decisions of what scale and speed to employ for testing. The full- and half-scale campaigns included Reynolds Number sweeps allowing conclusions to be reached on the minimum Reynolds number required for testing of fully-detailed commercial truck models. Furthermore the Reynolds sweeps were repeated at a variety of yaw angles to examine whether the minimum Reynolds Number was a function of yaw angle and the resulting flow regime changes. The test section of the NRC 9-meter wind tunnel is not sufficiently long to accommodate a full-scale tractor and a typical trailer length of 48′ or more.
Technical Paper

Controlling the Forming of Thermoplastics through Forming Power

2013-04-08
2013-01-0602
Controlling the forming of large thermoplastic parts from a simulation requires very precise predictions of the pressure and volume profile evolution. Present pressure profile based simulations adequately predict the thickness distribution of a part, but the forming pressure and volume profile development lack the precision required for process control. However new simulations based on the amount of power required to form the material can accurately predict these pressure and volume profiles. In addition online monitoring of the forming power on existing machines can be easily implemented by installing a flow rate and pressure meter at the gas entrance, and if necessary, exits of the part. An important additional benefit is that a machine thus equipped can function as an online rheometer that can characterize the viscosity of the material at the operating point by tuning the simulation to the online measurements.
Technical Paper

Design, Characterization and Initial Testing of a Vertical Stabilizer Common Research Model for Aircraft Ground Icing Testing

2023-06-15
2023-01-1439
Under contract to Transport Canada (TC) and with joint funding support from the Federal Aviation Administration (FAA), a vertical stabilizer common research model (VS-CRM) has been designed and built by the National Research Council of Canada (NRC). This model is a realistic, scaled representation of modern vertical stabilizer designs without being specific to a particular aircraft. The model was installed and tested in the NRC 3 m × 6 m Icing Wind Tunnel in late 2021/early 2022. Testing was led by APS Aviation Inc., with support from NRC and NASA, in order to observe the anti-icing fluids flow-off behavior with and without freezing or frozen precipitation during simulated take-off velocity profiles. The model dry-air aerodynamic properties were characterized using flow visualization tufts and boundary layer rakes. Using this data, a target baseline configuration was selected with a yaw angle equal to 0° and rudder deflection angle equal to -10°.
Technical Paper

Development and Commissioning of a Linear Compressor Cascade Rig for Ice Crystal Research

2011-06-13
2011-38-0079
This paper describes the commissioning of a linear compressor cascade rig for ice crystal research. The rig is located in an altitude chamber so the test section stagnation pressure, temperature and Mach number can be varied independently. The facility is open-circuit which eliminates the possibility of recirculating ice crystals reentering the test section and modifying the median mass diameter and total water content in time. As this is an innovative facility, the operating procedures and instrumentation used are discussed. Sample flow quality data are presented showing the distribution of velocity, temperature, turbulence intensity and ice water concentration in the test section. The control and repeatability of experimental parameters is also discussed.
Technical Paper

Development of a Test Rig for the Assessment of Remotely Piloted Aircraft Systems (RPAS) in Icing

2023-06-15
2023-01-1416
As the everyday use of flying small to medium size Remotely Piloted Aircraft System (RPAS) continues to evolve, so does the need to fly them in icing environments. To investigate an RPAS’ ability to fly in these conditions, an outdoor test rig has been developed at the National Research Council Canada (NRC) in which a range of RPAS have been tested in icing environments. This rig has an available test area of 3.05 m × 3.05 m, and is 5.1 m high. An array of spray nozzles installed at the top of the test rig provides a cloud that, when operated at sub-zero temperatures, enables simulation of in-flight icing conditions. The spray cloud is calibrated to provide water concentration and drop size distributions consistent with Appendix C, freezing drizzle and freezing rain conditions.
Technical Paper

Development of an Icing Test Facility for Rotors and Propellers of Remotely Piloted Aircraft Systems (RPAS)

2023-06-15
2023-01-1420
The development and calibration of a new facility to test medium size rotors for Remotely Piloted Aircraft Systems (RPAS) under in-flight icing conditions is described. This facility has made use of a 3 m x 6 m cold room available at the NRC which includes a spray system to provide the icing cloud as well as a dedicated rotor stand assembly that incorporates a load cell and dynamometer. Calibration data of the spray drop sizes and liquid water content are provided and compared to conditions of the natural environment as detailed in icing regulations for transport category airplanes, i.e., CFR 14 Part 25 Appendix C and O. Data to examine the sensitivity of rotor performance, under a constant liquid water content to various droplet sizes are provided for a medium sized rotor. Tests have also been performed that examine the ability of the rotor to maintain predefined thrust, torque and power performance throughout an icing encounter of fixed duration.
Technical Paper

Diesel Spray Structure Investigation by Laser Diffraction and Sheet Illumination

1992-02-01
920577
Intermittent and highly transient dense diesel sprays were investigated using laser diffraction and laser sheet illumination techniques to decipher the internal spray structure. Through careful experimental design, the unperturbed structure of the dense core region of a transient full cone diesel spray was observed for the first time. Diffraction measurements showed that larger droplets exist at the spray periphery and the Sauter mean diameter decreases from the periphery to the spray centerline. The results from both laser diffraction and 2-D imaging are inconsistent with the existence of an intact liquid core extending to a few hundred nozzle diameters. The intermittent and highly transient nature of diesel sprays ensures rapid and complete atomization within no more than twenty nozzle diameters.
Technical Paper

Evaluation of Visual Failure versus Aerodynamic Limit for a Snow Contaminated Anti-Iced Wing Section during Simulated Takeoff

2019-06-10
2019-01-1972
Under contract to Airlines for America (A4A), APS Aviation Inc. (APS), in collaboration with the National Research Council of Canada (NRC), completed an aircraft ground icing exploratory research project at the NRC 3 m × 6 m Wind Tunnel in Ottawa in January 2019. The purpose of this project was to investigate the feasibility of using aerodynamic data to evaluate the performance of contaminated anti-icing fluid, rather than the traditional visual fluid failure indicators that are used to develop Holdover Times (HOTs). The aerodynamic performance of a supercritical airfoil model with anti-icing fluids and snow contamination was evaluated against the clean, dry performance of the airfoil in order to calculate the associated aerodynamic penalty. The visual failure of the fluid was also evaluated for each run, and the visual and aerodynamic results were compared against each other for each contamination exposure time.
Journal Article

Evaluation of the Aerodynamics of Drag Reduction Technologies for Light-duty Vehicles: a Comprehensive Wind Tunnel Study

2016-04-05
2016-01-1613
In a campaign to quantify the aerodynamic drag changes associated with drag reduction technologies recently introduced for light-duty vehicles, a 3-year, 24-vehicle study was commissioned by Transport Canada. The intent was to evaluate the level of drag reduction associated with each technology as a function of vehicle size class. Drag reduction technologies were evaluated through direct measurements of their aerodynamic performance on full-scale vehicles in the National Research Council Canada (NRC) 9 m Wind Tunnel, which is equipped with a the Ground Effect Simulation System (GESS) composed of a moving belt, wheel rollers and a boundary layer suction system. A total of 24 vehicles equipped with drag reduction technologies were evaluated over three wind tunnel entries, beginning in early 2014 to summer 2015. Testing included 12 sedans, 8 sport utility vehicles, 2 minivans and 2 pick-up trucks.
Journal Article

Heavy-Duty Vehicle Rear-View Camera Systems

2014-09-30
2014-01-2381
Transport Canada, through its ecoTECHNOLOGY for Vehicles program, retained the services of the National Research Council Canada to undertake a test program to examine the operational and human factors considerations concerning the removal of the side mirrors on a Class 8 tractor equipped with a 53 foot dry van semi-trailer. Full scale aerodynamic testing was performed in a 2 m by 3 m wind tunnel on a system component basis to quantify the possible fuel savings associated with the removal of the side mirrors. The mirrors on a Volvo VN780 tractor were removed and replaced with a prototype camera-based indirect vision system consisting of four cameras mounted in the front fender location; two cameras on either side of the vehicle. Four monitors mounted in the vehicle - two mounted on the right A-pillar and two mounted on the left A-pillar - provided indirect vision information to the vehicle operator.
X