Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

A System for Simulating Road-Representative Atmospheric Turbulence for Ground Vehicles in a Large Wind Tunnel

2016-04-05
2016-01-1624
Turbulence is known to influence the aerodynamic and aeroacoustic performance of ground vehicles. What is not thoroughly understood are the characteristics of turbulence that influence this performance and how they can be applied in a consistent manner for aerodynamic design and evaluation purposes. Through collaboration between Transport Canada and the National Research Council Canada (NRC), a project was undertaken to develop a system for generating road-representative turbulence in the NRC 9 m Wind Tunnel, named the Road Turbulence System (RTS). This endeavour was undertaken in support of a larger project to evaluate new and emerging drag reduction technologies for heavy-duty vehicles. A multi-stage design process was used to develop the RTS for use with a 30% scale model of a heavy-duty vehicle in the NRC 9m Wind Tunnel.
Technical Paper

Activities of the Federal Aviation Administration’s Aviation Weather Research Program

1999-04-20
1999-01-1578
Weather is a major cause of aircraft accidents and incidents and the single largest contributor to air traffic system delays. Through improvements in the knowledge of current weather conditions and reliable forecasts, the Federal Aviation Administration (FAA) can improve aviation safety, increase system capacity, and enhance flight planning and fuel efficiency. The FAA has established an Aviation Weather Research (AWR) program to address specific requirements for weather support to aviation by providing the capability to generate more accurate and accessible weather observations, warnings, and forecasts and also by increasing the scientific understanding of atmospheric processes that spawn aviation weather hazards. The goal of AWR is to provide meteorological research that leads to the satisfaction of specific aviation weather requirements.
Technical Paper

Advanced Real-time Aerodynamic Model Identification Technique

2001-09-11
2001-01-2965
The Flight Research Laboratory (FRL), National Research Council (NRC) of Canada is currently developing an in-flight aircraft aerodynamic model identification technique that determines the small perturbation model at a given test condition. Initial demonstrations have been carried out using the NRC Falcon 20 research aircraft. An efficient system architecture, in terms of both software algorithms and hardware processing, has been designed to meet the stringent near real-time requirements of an in-flight system. As well, novel hardware and software techniques are being applied to the calibration and measurement of the fundamental in-flight parameters, such as air data. The small perturbation models are then combined to develop a global model of the aircraft that is validated by comparing the model response to flight data. The maneuvers were performed according to the FAA Acceptance Test Guide (ATG).
Journal Article

Aerodynamic Drag of Road Vehicles in Close Lateral Proximity

2023-04-11
2023-01-0952
Aerodynamic interaction between vehicles on a roadway can modify the fuel use and greenhouse gas emissions of the vehicle relative to their performance under isolated, uniform-wind conditions. A comprehensive wind-tunnel study was undertaken to examine changes to the aerodynamic drag experienced by vehicles in close proximity, in adjacent lanes. Wind-load measurements were conducted for two general configurations: 15%-scale testing with light-duty-vehicle (LDV) models, and 6.7%-scale testing with a heavy-duty vehicle (HDV) model. For the LDV study, a DrivAer model was tested with a proximate AeroSUV model or an Ahmed model at lateral distances representing 75%, 100%, and 125% of a typical highway lane spacing, and for longitudinal distances up to 2 vehicle lengths forward and back. Commensurate measurements were conducted for the AeroSUV model with the proximate DrivAer or Ahmed model.
Journal Article

Aerodynamic Performance of Flat-Panel Boat-Tails and Their Interactive Benefits with Side-Skirts

2016-09-27
2016-01-8015
This paper describes an investigation of the performance potential of conventional flat-panel boat-tail concepts applied to tractor-trailer combinations. The study makes use of data from two wind-tunnel investigations, using model scales of 10% and 30%. Variations in boat-tail geometry were evaluated including the influence of length, side-panel angle and shape, top-panel angle and vertical position, and the presence of a lower panel. In addition, the beneficial interaction of the aerodynamic influence of boat-tails and side-skirts that provides a larger drag reduction than the sum of the individual-component drag reductions, identified in recent years through wind-tunnel tests in different facilities, has been further confirmed. This confirmation was accomplished using combinations of various boat-tails and side-skirts, with additional variations in the configuration of the tractor-trailer configuration.
Technical Paper

Airborne Platform for Ice-Accretion and Coatings Tests with Ultrasonic Readings (PICTUR)

2023-06-15
2023-01-1431
Hazardous atmospheric icing conditions occur at sub-zero temperatures when droplets come into contact with aircraft and freeze, degrading aircraft performance and handling, introducing bias into some of the vital measurements needed for aircraft operation (e.g., air speed). Nonetheless, government regulations allow certified aircraft to fly in limited icing environments. The capability of aircraft sensors to identify all hazardous icing environments is limited. To address the current challenges in aircraft icing detection and protection, we present herein a platform designed for in-flight testing of ice protection solutions and icing detection technologies. The recently developed Platform for Ice-accretion and Coatings Tests with Ultrasonic Readings (PICTUR) was evaluated using CFD simulations and installed on the National Research Council Canada (NRC) Convair-580 aircraft that has flown in icing conditions over North East USA, during February 2022.
Technical Paper

Aircraft Performance Degradation - the Effects of Inflight Icing upon Lift, Drag and Propulsive Efficiency

2011-06-13
2011-38-0073
Data is presented from a number of flight research aircraft, which have been involved in the research of the effects of inflight icing, in a variety of atmospheric supercooled droplet and mixed-phase icing environmental conditions. The aircraft Types considered cover both Pneumatic and Thermal Ice Protection Systems (IPS). Icing includes supercooled droplet impact icing upon airframe and propeller blades and cold-soaked frost icing. The drag effects of inflight icing, from mixed-phase small and large droplets encountered during the course of SALPEX cloud physics research operations, upon a Fokker F-27 turboprop transport aircraft, have been analyzed. Furthermore, during the course of AIRS 1.5 and AIRS II inflight icing flight research operations, the NRC Convair conducted aerodynamic characterization maneuvers, following and during icing accretion in a wide range of environmental conditions of altitude, air temperature, LWC and droplet spectra.
Technical Paper

Airport, Airspace, and NAS System Capacity Studies

1998-09-28
985553
“As we handle more operations and passengers in the air, we must make certain we have the capacity to handle increased traffic on the ground.” - Jane Garvey, FAA Administrator (4/20/98) The FAA Technical Center (Aviation System Analysis and Modeling Branch, ACT-520) has been responsive to the FAA Airport Capacity Program customers for the past 22 years, developing, testing, and applying airfield and airspace simulation models. More than 90 capacity studies have been completed with ACT-520 personnel contributing their technical expertise to the Airport Design Teams. The teams are comprised of FAA personnel, airport operators, air carriers, other airport users and aviation industry representatives at major airports throughout the US. Initial studies focused on modeling airport operations from final approach, taxi, gate operations and departure processing. Later in the program, local airspace studies were included in some airport study efforts.
Technical Paper

Aluminum Sample Characterization on the NRC AIWT Ice Adhesion Spin Rig

2023-06-15
2023-01-1417
This paper presents the adhesion strength of ice on sanded and machine-finished aluminum test coupons as measured using the National Research Council of Canada (NRC) Altitude Icing Wind Tunnel (AIWT) spin rig. This rig is used to evaluate commercial and internally-developed coatings for low-adhesion properties, and the performance of ice on aluminum is required as a baseline to compare the coatings against. The tests are performed over a range of aerodynamic and icing cloud conditions, including variations in static air temperature and exposure time (and therefore accumulated ice mass). The data analysis includes an evaluation of the uncertainty in the results based on the measured ice mass repeatability and the measured shear stress repeatability.
Technical Paper

An Autonomous Steering Control Scheme for Articulated Heavy Vehicles Using - Model Predictive Control Technique

2023-04-11
2023-01-0658
This article presents an autonomous steering control scheme for articulated heavy vehicles (AHVs). Despite economic and environmental benefits in freight transportation, lateral stability is always a concern for AHVs in high-speed highway operations due to their multi-unit vehicle structures, and high centers of gravity (CGs). In addition, North American harsh winter weather makes the lateral stability even more challenging. AHVs often experience amplified lateral motions of trailing vehicle units in high-speed evasive maneuvers. AHVs represent a 7.5 times higher risk than passenger cars in highway operation. Human driver errors cause about 94% of traffic collisions. However, little attention has been paid to autonomous steering control of AHVs.
Technical Paper

An FAA Analysis of Aircraft Emergency Evacuation Demonstrations

1982-02-01
821486
Average continuous flow rates for each type of aircraft exit were examined in 89 full-scale evacuation demonstrations. Passengers tend to form continuous lines at available exits when evacuating an airplane. The study concludes that, with rare exception, the passenger rates of egress from the same type exit on different make and model airplanes are not significantly different. Passenger cabin configuration, seat pitch, and aisle width have no significant bearing on the egress rates provided the aircraft certification requirements for minimum aisle width and exit accessibility are met. Injuries resulting from actual emergency evacuations and evacuation demonstrations are also examined.
Journal Article

An Investigation of the Influence of Close-Proximity Traffic on the Aerodynamic Drag Experienced by Tractor-Trailer Combinations

2019-04-02
2019-01-0648
Recent research to investigate the aerodynamic-drag reduction associated with truck platooning systems has begun to reveal that surrounding traffic has a measurable impact on the aerodynamic performance of heavy trucks. A 1/15-scale wind-tunnel study was undertaken to measure changes to the aerodynamic drag experienced by heavy trucks in the presence of upstream traffic. The results, which are based on traffic conditions with up to 5 surrounding vehicles in a 2-lane configuration and consisting of 3 vehicle shapes (compact sedans, SUVs, and a medium-duty truck), show drag reductions of 1% to 16% for the heavy truck model, with the largest reductions of the same order as those experienced in a truck-platooning scenario. The data also reveal that the performance of drag-reduction technologies applied to the heavy-truck model (trailer side-skirts and a boat-tail) demonstrate different performance when applied to an isolated vehicle than to conditions with surrounding traffic.
Technical Paper

An Objective Look at Helicopter Automation from a Test Pilot's Point of View

1982-02-01
821449
This paper will discuss some considerations regarding man-machine interface during helicopter instrument flight. Several misconceptions have existed regarding FAA helicopter IFR certification. In response to some concerns pertaining to “excessive workload considerations,” designers have responded with several configurations. Some of these configurations have highlighted the need to educate the designer and the pilot population that the pilot must have the option to “actively participate” in the flight activity during helicopter IFR operations. “Active participation” includes the option of flying the vehicle through the normal flight controls. In addition, there has been some confusion regarding the terms “stability augmentation systems” and “autopilot.” Some individuals use the terms interchangeably. This paper will discuss the various lessons learned during FAA certification of helicopters for IFR flight from a certification test pilot's viewpoint.
Technical Paper

Analysis of the Unsteady Wakes of Heavy Trucks in Platoon Formation and Their Potential Influence on Energy Savings

2021-04-06
2021-01-0953
The authors present transient wind velocity measurements from two successive, well-documented truck platooning track-test campaigns to assess the wake-shedding behavior experienced by trucks in various platoon formations. Utilizing advanced analytics of data from fast-response (100-200-Hz) multi-hole pressure probes, this analysis examines aerodynamic flow features and their relationship to energy savings during close-following platoon formations. Applying Spectral analysis to the wind velocity signals, we identify the frequency content and vortex-shedding behavior from a forward truck trailer, which dominates the flow field encountered by the downstream trucks. The changes in dominant wake-shedding frequencies correlate with changes to the lead and follower truck fuel savings at short separation distances.
Technical Paper

Assessment of the Dynamic Stability Characteristics of the Bell Model M427 Helicopter Using Parameter Estimation Technology

2002-11-05
2002-01-2916
A joint program between Bell Helicopter Textron Canada and the Flight Research Laboratory of Canada's National Research Council was initiated to address the aerodynamic modelling challenges of the Bell M427 helicopter. The primary objective was to use the NRC parameter estimation technique, based on modified maximum likelihood estimation (MMLE), on a limited set of flight test data to efficiently develop an accurate forward-flight mathematical model of the Bell M427. The effect of main rotor design changes on the aircraft stability characteristics was also investigated, using parameter estimation. This program has demonstrated the feasibility of creating a forward-flight rotorcraft aerodynamic mathematical model based on time-domain parameter estimation, and the ability of a 6 degree-of-freedom MMLE model to accurately document the impact of minor rotor modifications on aircraft stability.
Technical Paper

Canard Certification Loads — A Review of FAA Concerns

1987-10-01
871847
Since the first airplane was certified in 1927, the standard configuration has been with the main lifting surface or surfaces forward of the stabilizing surface. Although some of the advantages of the canard configuration were recognized quite early - by the Wright Brothers, for example - canard surfaces have been used to date only as additional control surfaces on some military airplanes, and on some amateur built airplanes. As a result, the Airworthiness Regulations of Reference 1 address only tail aft configurations. When FAA was first approached regarding certification of a canard configured small airplane, an FAA/Industry Empennage Loads Working Group was formed to develop technical proposals for the necessary rule changes and policy. The concerns addressed by this working group are discussed in the following sections.
Technical Paper

Certification Issues Regarding Advanced Technology Control Systems in Civil Rotorcraft

1987-10-01
871850
Microprocessor technology is allowing functions in aircraft to be implemented to a greater degree by digital process control than by conventional mechanical or electromechanical means. A review of this technology indicates a need for updated certification criteria. A high level of commitment to the technology such as fly-by-wire is completely beyond the scope of existing certification criteria. This paper emphasizes the areas of software validation levels, increased concern with basic power system qualification, and increased environmental concerns for electromagnetic interference and lightning.
Technical Paper

Certification Issues for a Tilt-Rotor Aircraft

1987-10-01
871852
Powered-lift aircraft, such as the V-22 tilt-rotor, are likely to spin-off a civil version. The present FAA airworthiness certification standards are not considered to be adequate for these unique aircraft. The FAA has drafted certification criteria and held a public conference to review the draft and identify significant technical certification issues that require further effort to establish correct standards for powered-lift aircraft. Some of those issues are discussed.
Technical Paper

Characterization of Methane Emissions from a Natural Gas-Fuelled Marine Vessel under Transient Operation

2021-04-06
2021-01-0631
Natural gas is an increasingly attractive fuel for marine applications due to its abundance, lower cost, and reduced CO2, NOx, SOx, and particulate matter (PM) emissions relative to conventional fuels such as diesel. Methane in natural gas is a potent greenhouse gas (GHG) and must be monitored and controlled to minimize GHG emissions. In-use GHG emissions are commonly estimated from emission factors based on steady state engine operation, but these do not consider transient operation which has been noted to affect other pollutants including PM and NOx. This study compares methane emissions from a coastal marine vessel during transient operation to those expected based on steady state emission factors. The exhaust methane concentration from a diesel pilot-ignited, low pressure natural gas-fuelled engine was measured with a wavelength modulation spectroscopy system, during periods of increasing and decreasing engine load (between 3 and 90%).
X