Refine Your Search

Topic

Affiliation

Search Results

Technical Paper

A Braking Force Distribution Strategy in Integrated Braking System Based on Wear Control and Hitch Force Control

2018-04-03
2018-01-0827
A braking force distribution strategy in integrated braking system composed of the main braking system and the auxiliary braking system based on braking pad wear control and hitch force control under non-emergency braking condition is proposed based on the Electronically Controlled Braking System (EBS) to reduce the difference in braking pad wear between different axles and to decrease hitch force between tractors and trailers. The proposed strategy distributes the braking force based on the desired braking intensity, the degree of the braking pad wear and the limits of certain braking regulations to solve the coupling problems between braking safety, economical efficiency of braking and the comfort of drivers. Computer co-simulations of the proposed strategy are performed.
Technical Paper

A Hybrid Physical and Data-Driven Framework for Improving Tire Force Calculation Accuracy

2023-04-11
2023-01-0750
The accuracy of tire forces directly affects the vehicle dynamics model precision and determines the ability of the model to develop the simulation platform or design the control strategy. In the high slip angle, due to the complex interactions at tire-road interfaces, the forces generated by the tires are high nonlinearity and uncertainty, which pose issues in calculating tire force accurately. This paper presents a hybrid physical and data-driven tire force calculation framework, which can satisfy the high nonlinearity and uncertainty condition, improve the model accuracy and effectively leverage prior knowledge of physical laws. The parameter identification for the physical tire model and the data-based compensation for the unknown errors between the physical tire model and actual tire force data are contained in this framework. First, the parameters in the selected combined-slip Burckhardt tire model are identified by the nonlinear least square method with tire test data.
Technical Paper

A Model-Based Mass Estimation and Optimal Braking Force Distribution Algorithm of Tractor and Semi-Trailer Combination

2013-04-08
2013-01-0418
Taking a good longitudinal braking performance on flat and level road of tractor and semi-trailer combination as a target, in order to achieve an ideal braking force distribution among axles, while the vehicle deceleration is just depend on the driver's intention, not affected by the variation of semi-trailer mass, the paper proposes a model based vehicle mass identification and braking force distribution strategy. The strategy identifies the driver's braking intention via braking pedal, estimates semi-trailer's mass during the building process of braking pressure in brake chamber, distributes braking force among axles by using the estimated mass. And a double closed-loop regulation of the vehicle deceleration and utilization adhesion coefficient of each axle is presented, in order to eliminate the bad effect of mass estimation error, and enhance the robustness of the whole algorithm. A simulation is conducted by utilizing MATLAB/Simulink and TruckSim.
Technical Paper

A New Type Partial Flow Dilution Tunnel with Geometrical Partitioning for Diesel Particulate Measurement

2001-09-24
2001-01-3579
The authors have developed a new partial flow dilution tunnel (hereafter referred to as PPFT), whose principal device is a flux splitting gas divider, as a new means of measuring particulate emissions which can be applied to transient cycle testing of diesel engines. The advantage of this system is that it can achieve perfect constant velocity splitting by means of its structure, and theoretically can also maintain high splitting performance despite fluctuations in the exhaust flow rate, including those due to engine exhaust pulsation. We compared this system with a full tunnel by analyzing the basic performance of the system and measuring particulate matter (PM) using an actual vehicle engine.
Technical Paper

A Nonlinear Slip Ratio Observer Based on ISS Method for Electric Vehicles

2018-04-03
2018-01-0557
Knowledge of the tire slip ratio can greatly improve vehicle longitudinal stability and its dynamic performance. Most conventional slip ratio observers were mainly designed based on input of non-driven wheel speed and estimated vehicle speed. However, they are not applicable for electric vehicles (EVs) with four in-wheel motors. Also conventional methods on speed estimation via integration of accelerometer signals can often lead to large offset by long-time integral calculation. Further, model uncertainties, including steady state error and unmodeled dynamics, are considered as additive disturbances, and may affect the stability of the system with estimated state error. This paper proposes a novel slip ratio observer based on input-to-state stability (ISS) method for electric vehicles with four-wheel independent driving motors.
Technical Paper

A Prediction Method of Tire Combined Slip Characteristics from Pure Slip Test Data

2020-04-14
2020-01-0896
A high-precision steady state tire model is critical in the tire and vehicle matching research. For the moment, the popular Magic Formula model is an empirical model, which requires the pure and combined test data to identify the model parameters. Although MTS Flat-trac is an efficient tire test rig, the long test period and high test cost of a complete tire model tests for handling are yet to be solved. Therefore, it is necessary to explore a high accuracy method for predicting tire complex mechanical properties with as few test data as possible. In this study, a method for predicting tire combined slip characteristics from pure cornering and pure longitudinal test data has been investigated, and verified by comparing with the test data. Firstly, the prediction theory of UniTire model is introduced, and the formula for predicting combined slip characteristics based on constant friction coefficient is derived.
Technical Paper

A Preliminary Investigation of the Performance and Emissions of a Port-Fuel Injected SI Engine Fueled with Acetone-Butanol-Ethanol (ABE) and Gasoline

2014-04-01
2014-01-1459
Alcohols, because of their potential to be produced from renewable sources and their characteristics suitable for clean combustion, are considered potential fuels which can be blended with fossil-based gasoline for use in internal combustion engines. As such, n-butanol has received a lot of attention in this regard and has shown to be a possible alternative to pure gasoline. The main issue preventing butanol's use in modern engines is its relatively high cost of production. Acetone-Butanol-Ethanol (ABE) fermentation is one of the major methods to produce bio-butanol. The goal of this study is to investigate the combustion characteristics of the intermediate product in butanol production, namely ABE, and hence evaluate its potential as an alternative fuel. Acetone, n-butanol and ethanol were blended in a 3:6:1 volume ratio and then splash blended with pure ethanol-free gasoline with volumetric ratios of 0%, 20%, 40% to create various fuel blends.
Technical Paper

A Sliding Mode Observer for Vehicle Slip Angle and Tire Force Estimation

2014-04-01
2014-01-0865
In this paper, a sliding mode observer for estimating vehicle slip angle and tire forces is developed. Firstly, the sliding mode observer design approach is presented. A system damping is included in the sliding mode observer to speed the observer convergence and to decrease the observer chattering. Secondly, the sliding mode observer for vehicle states is developed based on a 7 DOF embedded vehicle model with a nonlinear tire model ‘UniTire’. In addition, since the tire lateral stiffness is sensitive to the vertical load, the load transfers are considered in the embedded model with a set of algebraic equations. Finally, a simulation evaluation of the proposed sliding mode observer is conducted on a validated 14 DOF vehicle model. The simulation results show the model outputs closely match the estimations by the proposed sliding mode observer.
Technical Paper

A Study of LPG Lean Burn for a Small SI Engine

2002-10-21
2002-01-2844
This paper presents a study of LPG lean burn in a motorcycle SI engine. The lean burn limits are compared by several ways. The relations of lean burn limit with the parameters, such as engine speed, compression ratio and advanced spark ignition etc. are tested. The experimental results show that larger throttle opening, lower engine speed, earlier spark ignition timing, larger electrode gap and higher compression ratio will extend the lean burn limit of LPG. The emission of a LPG engine, especially on NOx emission, can be significantly reduced by means of the lean burn technology.
Journal Article

A Study on High-Accuracy Test Method for Fuel Consumption of Heavy-Duty Diesel Vehicles Considering the Transient Characteristics of Engines

2016-04-05
2016-01-0908
In the conventional approval test method of fuel consumption for heavy-duty diesel vehicles currently in use in Japan, the fuel consumption under the transient test cycle is calculated by integrating the instantaneous fuel consumption rate referred from a look-up table of fuel consumptions measured under the steady state conditions of the engine. Therefore, the transient engine performance is not considered in this conventional method. In this study, a highly accurate test method for fuel consumption in which the map-based fuel consumption rate is corrected using the transient characteristics of individual engines was developed. The method and its applicability for a heavy-duty diesel engine that complied with the Japanese 2009 emission regulation were validated.
Technical Paper

A Study on Hybrid Control Method for Improvement of Fuel Economy and Exhaust-Gas Emission of Hybrid Trucks

2015-09-01
2015-01-1780
Next-generation vehicles which include Electric Vehicles and Hybrid Electric Vehicles are studied and expected to reduce carbon dioxide emissions. The number of small delivery hybrid trucks has increased in the commercial vehicle class. The engine load of a commercial hybrid truck is reduced by using an electric motor. Fuel economy of the hybrid truck is improved with the assist. On the other hand, exhaust-gas temperature is decreased, and it has a negative effect on the purification performance of aftertreatment system. In this report, the fuel performance and emission gas characteristics of marketed small hybrid trucks were surveyed using the chassis dynamometer test system.
Journal Article

Accurate Pressure Control Based on Driver Braking Intention Identification for a Novel Integrated Braking System

2021-04-06
2021-01-0100
With the development of intelligent and electric vehicles, higher requirements are put forward for the active braking and regenerative braking ability of the braking system. The traditional braking system equipped with vacuum booster has difficulty meeting the demand, therefore it has gradually been replaced by the integrated braking system. In this paper, a novel Integrated Braking System (IBS) is presented, which mainly contains a pedal feel simulator, a permanent magnet synchronous motor (PMSM), a series of transmission mechanisms, and the hydraulic control unit. As an integrative system of mechanics-electronics-hydraulics, the IBS has complex nonlinear characteristics, which challenge the accurate pressure control. Furthermore, it is a completely decoupled braking system, the pedal force doesn’t participate in pressure-building, so it is necessary to precisely identify driver’s braking intention.
Technical Paper

Accurate Pressure Control Strategy of Electronic Stability Program Based on the Building Characteristics of High-Speed Switching Valve

2019-04-02
2019-01-1107
The Electronic Stability Program (ESP), as a key actuator of traditional automobile braking system, plays an important role in the development of intelligent vehicles by accurately controlling the pressure of wheels. However, the ESP is a highly nonlinear controlled object due to the changing of the working temperature, humidity, and hydraulic load. In this paper, an accurate pressure control strategy of single wheel during active braking of ESP is proposed, which doesn’t rely on the specific parameters of the hydraulic system and ESP. First, the structure and working principle of ESP have been introduced. Then, we discuss the possibility of Pulse Width Modulation (PWM) control based on the mathematical model of the high-speed switching valve. Subsequently, the pressure building characteristics of the inlet and outlet valves are analyzed by the hardware in the Loop (HiL) experimental platform.
Technical Paper

Active Interior Noise Control for Passenger Vehicle Using the Notch Dual-Channel Algorithms with Two Different Predictive Filters

2021-02-18
2020-01-5228
Active control of low-frequency engine order noise helps to improve the passenger’s sense of hearing, so it has become one of the hot topics in the automotive field. Depth improvement of active noise control (ANC) performance from the perspective of novel algorithms has attracted the attention of researchers. The conventional notch dual-channel filtered-x least mean square (NDFxLMS) algorithm shows acceptable noise reduction for the elimination of engine order noise. To further enhance the steady-state ANC effect, this paper proposed two new notch algorithms: the notch dual-channel filtered-x recursive least square (NDFxRLS) algorithm and the notch dual-channel affine projection (NDAP) algorithm. Vehicle simulation tests show that both the proposed algorithms, especially the NDFxRLS algorithm, have a satisfying performance for the cancellation of interior noise from the engine.
Technical Paper

An Efficient Assistance Tool for Evaluating the Effect of Tire Characteristics on Vehicle Pull Problem

2020-04-14
2020-01-1237
The vehicle pull problem is very important to driving safety. Major factors that may cause the pull problem related to tire include variations of geometric dimension (e.g. RPK) and stiffness (e.g. cornering stiffness, aligning stiffness), plysteer and conicity. In previous research, the influencing mechanism of these factors was well studied. But in fact, vehicle pull problem caused by tire is probabilistic. When we assemble four tires onto the car, there could be 384 different assembly arrangements. If there are significant differences among these four tires, there will also be significant differences in the influence of different tire assembly schemes on vehicle pull, which has not been systematically discussed in previous studies. If we want to evaluate the pull performance of all these arrangements by vehicle test, it will be a time consuming process which will take almost 24 working days, along with a high test expense.
Technical Paper

An Experimental Investigation of the Combustion Characteristics of Acetone-Butanol-Ethanol-Diesel Blends with Different ABE Component Ratios in a Constant Volume Chamber

2014-04-01
2014-01-1452
Acetone-Butanol-Ethanol (ABE), an intermediate product in the ABE fermentation process for producing bio-butanol, is considered a promising alternative fuel because it not only preserves the advantages of oxygenated fuel which typically emit less pollutants compared to conventional diesel, but also lowers the cost of fuel recovery for each individual component during the fermentation. With the development of advanced ABE fermentation technology, the volumetric percentage of acetone, butanol and ethanol in the bio-solvents can be precisely controlled. In this respect, it is desirable to estimate the performance of different ABE blends to determine the best blend and optimize the production process accordingly. ABE fuels with different component ratio, (A: B: E: 6:3:1; 3:6:1; 0:10:0, vol. %), were blended with diesel and tested in a constant volume chamber.
Technical Paper

Analysis of Reaction Mechanisms Controlling Cool and Thermal Flame with DME Fueled HCCI Engines

2006-10-16
2006-01-3299
Autoignition in the homogeneous charge compression ignition (HCCI) process typically exhibits heat release in two stages called cool flame and thermal flame. The mechanisms governing these two stages were investigated using a DME-fueled HCCI engine and numerical simulations. Composition analysis after cool flame showed that the cool flame is explained by a chain reaction mechanism in which the chain terminator is the intermediate species formed in cool flame. In the case of thermal flame, although the chain reaction mechanism is complex, the behavior is clearly described by thermal explosion theory in which the rate-determining reaction is H2O2 decomposition.
Technical Paper

Application of Biodiesel Fuel to Modern Diesel Engine

2006-04-03
2006-01-0233
The 1997 Kyoto protocol came into effect in February, 2005 to reduce greenhouse gases within the period 2008-2012 by at least 5 % with respect to 1990 levels. Application of biodiesel fuel (BDF) to diesel engine is very effective to reduce CO2 emission, because BDF is carbon neutral in principle. The purpose of this project is to produce a light-duty biodiesel truck which can be suitable for emission regulation in next generation. The effect of BDF on the performance and emissions of modern diesel engine which was equipped with the aftertreatment for PM and NOx emissions was investigated without modifications of engine components and parameters, as a first step for research and development of biodiesel engine. Rapeseed oil methyl ester (RME) was selected in behalf of BDF, and combustion characteristics, engine performance and exhaust emissions were made a comparison between RME and petroleum diesel fuel by steady operation and Japan transient mode (JE05) tests.
Technical Paper

Application of Slope Sensor in Hill-Start to AMT (Automated Manual Transmission) Vehicles

2015-04-14
2015-01-1108
In order to improve the drivability and reduce the clutch friction loss, low-cost slope sensor is used in hill-start control of AMT vehicles. After the power spectrum analysis of the original signal and the design of the digital filter, the angle of the slope is obtained with short enough delay and small enough noise. By using this slope angle information, slope resistance force can be calculated online so that the vehicle can be prevented from sliding backward and optimal launch control can be realized. The digital filter of slope angle signal and the optimal controller of dry clutch engagement are embedded in the TCU (Transmission Control Unit) of a micro-car Geely Panda. Real-vehicle experiments are carried out with optimal clutch controller, which shows that the hill-start with low-cost slope sensor and optimal clutch controller can provide successful vehicle launch with little driveline shock. In addition, it can also avoid backward sliding and engine over-speed effectively.
Technical Paper

Automatic Drive Train Management System for 4WD Vehicle Based on Road Situation Identification

2018-04-03
2018-01-0987
The slip ratio of vehicle driving wheels is easily beyond a reasonable range in the complex and changeable driving conditions. In order to achieve the adaptive acceleration slip regulation of four-wheel driving (4WD) vehicle, a fuzzy control strategy of Automatic Drive Train Management (ADM) system based on road situation identification was proposed in this paper. Firstly, the influence on the control strategy of ADM system was analyzed from two aspects, which included the different road adhesion coefficients and the vehicle’s ramp driving state. In the meantime several quantitative expressions of relevant control parameters were derived. Secondly, the fuzzy logic control algorithm was adopted to design a road situation identification subsystem and a ramp driving state identification subsystem respectively. The former was based on the μ-S curve model, and the latter was based on the vehicle driving equilibrium equation.
X