Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

A Comparison of the NHTSA Research Offset Oblique and Small Overlap Impact Tests and the IIHS Moderate and Small Overlap Tests

2014-04-01
2014-01-0537
The National Highway Traffic Safety Administration (NHTSA) and the Insurance Institute for Highway Safety (IIHS) have both developed crash test methodologies to address frontal collisions in which the vehicle's primary front structure is either partially engaged or not engaged at all. IIHS addresses Small Overlap crashes, cases in which the vehicle's primary front energy absorbing structure is not engaged, using a rigid static barrier with an overlap of 25% of the vehicle's width at an impact angle of 0°. The Institute's Moderate Overlap partially engages the vehicle's primary front energy absorbing structure using a deformable static barrier with 40% overlap at a 0° impact angle. The NHTSA has developed two research test methods which use a common moving deformable barrier impacting the vehicle with 20% overlap at a 7° impact angle and 35% overlap at a 15° impact angle respectively.
Technical Paper

A Dynamic Test Procedure for Evaluation of Tripped Rollover Crashes

2002-03-04
2002-01-0693
Rollover crashes have continued to be a source of extensive research into determining both vehicle performance, and occupant restraint capabilities. Prior research has utilized various test procedures, including the FMVSS 208 dolly fixture, as a basis for evaluating vehicle and restraint performance. This research, using 2001 Nissan Pathfinder sport utility vehicles (SUVs), was conducted to update the status of passenger vehicle rollover testing, and evaluate dynamic test repeatability with a new test procedure. A series of eight rollover tests was conducted using these SUV vehicles, mounted on a modified FMVSS 208 rollover dolly fixture, with instrumented dummies in both front seat positions. This test protocol involved launching the vehicles horizontally, after snubbing the dolly fixture, and having the leading-side tires contact curbing for a trip mechanism.
Technical Paper

A New Quasi-Dimensional Combustion Model Applicable to Direct Injection Gasoline Engine

2010-04-12
2010-01-0544
Gasoline engines employ various mechanisms for improvement of fuel consumption and reduction of exhaust emissions to deal with environmental problems. Direct fuel injection is one such technology. This paper presents a new quasi-dimensional combustion model applicable to direct injection gasoline engine. The Model consists of author's original in-cylinder turbulence and mixture homogeneity sub model suitable for direct fuel injection conditions. Model validation results exhibit good agreement with experimental and 3D CFD data at steady state and transient operating conditions.
Technical Paper

A Study of Heat Rejection and Combustion Characteristics of a Low-temperature and Pre-mixed Combustion Concept Based on Measurement of Instantaneous Heat Flux in a Direct-Injection Diesel Engine

2000-10-16
2000-01-2792
There have been strong demands recently for reductions in the fuel consumption and exhaust emissions of diesel engines from the standpoints of conserving energy and curbing global warming. A great deal of research is being done on new emission control technologies using direct-injection (DI) diesel engines that provide high thermal efficiency. This work includes dramatic improvements in the combustion process. The authors have developed a new combustion concept called Modulated Kinetics (MK), which reduces smoke and NOx levels simultaneously by reconciling low-temperature combustion with pre-mixed combustion [1, 2]. At present, research is under way on the second generation of MK combustion with the aim of improving emission performance further and achieving higher thermal efficiency [3]. Reducing heat rejection in the combustion chamber is effective in improving the thermal efficiency of DI diesel engines as well as that of MK combustion.
Technical Paper

A Study of Laser Radar

1985-01-01
856036
Various radar systems have been proposed as collision avoidance sensors for automatic braking and warning applications. Practical use of laser radar systems is near with the introduction of high power, high reliability laser diodes. Utilizing these new devices, a laser radar system has been adapted for measuring the distance to objects in its path. It was first shown that reflectors on the rear of the automobile possess high reflectivity and sharp directivity. Given these characteristics, a compact laser radar system was tested that employed 12W laser diodes and PIN photodiodes. The maximum range of approximately 100 m was obtained. Furthermore, the ability to discriminate other vehicles from roadside objects was achieved by detecting discontinuity in measured distance data through a microprocessor. These results show that the performance of laser radar is comparable to that of microwave radar.
Technical Paper

A Study of a DISI Engine with a Centrally Located High-pressure Fuel Injector

2004-10-25
2004-01-2944
Vehicle manufacturers developed two mixture formation concepts for the first generation of gasoline direct-injection (GDI) engines. Both the wall-guided concept with reverse tumble air motion or swirl air motion and the air-guided concept with tumble air motion have the fuel injector located at the side of the combustion chamber between the two intake ports. This paper proposes a new GDI concept. It has the fuel injector located at almost the center of the combustion chamber and with the spark plug positioned nearby. An oval bowl is provided in the piston crown. The fuel spray is injected at high fuel pressures of up to 100 MPa. The spray creates strong air motion in the combustion chamber and reaches the piston bowl. The wall of the piston bowl changes the direction of the spray and air motion, producing an upward flow. The spray and air flow rise and reach the spark plug.
Technical Paper

A Study of a Method for Predicting the Risk of Crossing-Collisions at Intersection

2008-04-14
2008-01-0524
The probability or risk of traffic accidents must be estimated quantitatively in order to implement effective traffic safety measures. In this study, various statistical data and probability theory were used to examine a method for predicting the risk of crossing-collisions, representing a typical type of accident at intersections in Japan. Crossing-collisions are caused by a variety of factors, including the road geometry and traffic environment at intersections and the awareness and intentions of the drivers of the striking and struck vehicles. Bayes' theorem was applied to find the accident probability of each factor separately. Specifically, the probability of various factors being present at the time of a crossing-collision was estimated on the basis of traffic accident data and observation survey data.
Journal Article

A Study of a Multistage Injection Mechanism for Improving the Combustion of Direct-Injection Gasoline Engines

2015-04-14
2015-01-0883
Technologies for improving the fuel economy of gasoline engines have been vigorously developed in recent years for the purpose of reducing CO2 emissions. Increasing the compression ratio for improving thermal efficiency and downsizing the engine based on fuel-efficient operating conditions are good examples of technologies for enhancing gasoline engine fuel economy. A direct-injection system is adopted for most of these engines. Direct injection can prevent knocking by lowering the in-cylinder temperature through fuel evaporation in the cylinder. Therefore, direct injection is highly compatible with downsized engines that frequently operate under severe supercharging conditions for improving fuel economy as well as with high compression ratio engines for which susceptibility to knocking is a disadvantage.
Technical Paper

A Study of a Practical Numerical Analysis Method for Heat Flow Distribution in the Engine Compartment

1993-04-01
931081
The thermal environment in the automotive engine compartment is expected to become increasingly severe in the years ahead owing to the installation of a large-size manifold catalyst to reduce exhaust emissions, among other factors. This will make it even more important to analyze the engine compartment layout in terms of heat flow considerations at the design conceptualization stage of a new vehicle. In this research, a flow analysis program called DRAG4D was applied to find the flow velocity distribution and ambient air temperature distribution in the engine compartment during driving, idling and after the engine was turned off. This original program developed at Nissan takes into account the effects of the energy balance and buoyancy, and provides a practical level of prediction accuracy. The time required to create an analytical model and perform the computations has been shortened by using an automatic grid generation function, based on a solid model, and experimental equations.
Technical Paper

A Study of a Telematics Communication Method Involving Switching Signals to Voice and Data Lines

2003-03-03
2003-01-0132
This paper proposes a new voice and data wireless communication method for telematics services. Data-voice (DV) modems have conventionally been used for simultaneous transmission of voice and data. With this method, however, one line is split between the data part and voice part. Lost data are retransmitted, but the voice signal is not resent because voice communication requires a real-time characteristic. The new voice and data wireless communication method proposed here switches voice to a voice line and data to a data line.
Technical Paper

An Analysis of Induction Port Fuel Behavior

1991-10-01
912348
Since the fuel supply specifications in a multi-point injection (MPI) system are usually determined experimentaly, the way fuel behaves in the induction port is still not clearly understood. In this study, a fuel behavior model is developed to gain a better understanding of how fuel behaves in the induction port so that the best fuel supply specifications can be determined on the basis of analysis. This paper outlines a model of fuel spray and wall film and presents some typical calculation results. Taking into account fuel properties, the vapor, the flow and other characteristics of fuel in the induction port are calculated using these models. A comparison of the calculated results with experimental data confirms the validity of the model. The calculated results show the effects of the fuel propeties and fuel supply system specifications on induction port fuel behavior.
Technical Paper

An Application of CAP (Computer-Aided Principle) to Structural Design for Vehicle Crash Safety

2007-04-16
2007-01-0882
The Computer-Aided Principle (CAP) is applied in this study as an effective approach to the crashworthiness design of the vehicle front-end structure. With this method, correlative parameters are extracted in a parametric study by using a cluster analysis. The results can help engineers to understand the fundamental mechanisms of structural phenomena. A simulation example of an offset frontal crash against a deformable barrier (ODB) is presented to show the effectiveness of the proposed method.
Technical Paper

An Automatic Parameter Matching for Engine Fuel Injection Control

1992-02-01
920239
An automatic matching method for engine control parameters is described which can aid efficient development of new engine control systems. In a spark-ignition engine, fuel is fed to a cylinder in proportion to the air mass induced in the cylinder. Air flow meter characteristics and fuel injector characteristics govern fuel control. The control parameters in the electronic controller should be tuned to the physical characteristics of the air flow meter and the fuel injectors during driving. Conventional development of the engine control system requires a lot of experiments for control parameter matching. The new matching method utilizes the deviation of feedback coefficients for stoichiometric combustion. The feedback coefficient reflects errors in control parameters of the air flow meter and fuel injectors. The relationship between the feedback coefficients and control parameters has been derived to provide a way to tune control parameters to their physical characteristics.
Technical Paper

An Electronic Carburetor Controller

1979-02-01
790743
An electronically controlled closed-loop carburetor system has been developed for production application in Datsun car models. Providing a means of complying with Japanese Emission Standards, this design features the electronic control of carburetor supplied fuel with significantly improved emission performance and fuel economy. Technological advances include the noteworthy compensation of oxygen sensor output variations and improved transient emission.
Technical Paper

Analysis of Disc Brake Squeal, 1992

1992-02-01
920553
Eliminating squeal noise generated during braking is an important task for the improvement of vehicle passengers' comfort. Considerable amount of research and development works have been done on the problem to date. In this study, we focused on the analyses of friction self-excited vibration and brake part resonance during high frequency brake squeal. Friction self-excited vibration is caused by the dry friction between pads and rotor, and occurs as a function of their relative sliding velocities. Its vibration frequency can be calculated in relation to the mass and stiffness of the pad sliding surface. Frequency responses of the brake assembly were measured and the vibration modes of the pad, disc and caliper during squeal were identified through modal analysis. Further study led to the development of a computer simulation method for analyzing the vibration modes of brake parts. Analytical results obtained using the method agreed well with the corresponding experimental data.
Technical Paper

Analysis of Interior Airflow in a Full-Scale Passenger-Compartment Model Using a Laser-Light-Sheet Method

1992-02-01
920206
Flow velocity distributions in the passenger compartment were measured from visualized images of particle flow paths obtained with a full-scale model. The flow paths were visualized using an approach that combined a particle tracing method with a pulse-laser light technique. Air was used as the fluid medium with the full-scale passenger compartment model and water was used as the fluid medium with a one-fourth scale model. A comparison of the results obtained with the two models confirmed that there was good agreement between the flow velocity distributions. Using the full-scale model, measurements were also made of the flow velocity distributions when two dummies were placed in the front-seats.
Technical Paper

Analysis of Rollover Restraint Performance With and Without Seat Belt Pretensioner at Vehicle Trip

2002-03-04
2002-01-0941
Eight rollover research tests were conducted using the 2001 Nissan Pathfinder with a modified FMVSS 208 dolly rollover test method where the driver and right front dummy restraint performance was analyzed. The rollover tests were initiated with the vehicle horizontal, not at a roll angle. After the vehicle translated laterally for a short distance, a trip mechanism was introduced to overturn the vehicle. Retractor, buckle, and latch plate performance in addition to the overall seat belt performance was analyzed and evaluated in the rollover test series. Retractor pretensioners were activated near the rollover trip in three of the tests to provide research data on its effects. Various dummy sizes were utilized. The test series experienced incomplete data collection and a portion of the analog data was not obtained. National Automotive Sampling System (NASS) data was also analyzed to quantify the characteristics of real world rollovers and demonstrated the benefits of restraint use.
Technical Paper

Analysis on Idle Speed Stability in Port Fuel Injection Engines

1986-10-01
861389
It has been reported by several researchers that the L-jetronic fuel injection system offers better idle speed stability than the D-jetronic one in port fuel injection engines. However, the volume between the throttle valve and the intake valves in the L-jetronic system acts as a first order lag element in the system and causes air-fuel ratio fluctuation which, in turn, induces idle speed hunting under certain conditions. This study employs computer simulation to determine the influence of three parameters on idle speed stability: (1) flywheel inertia, (2) intake manifold volume, and (3) air-fuel ratio calibration. It also explores means of improving idle speed stability by controlling the air-fuel ratio and ignition timing. The use of actual engine torque data to estimate the generated torque from the amount of air and fuel in each combustion cycle was the unique feature of this study.
Technical Paper

Application of CAP to Analyze Mechanisms Producing Dummy Injury Readings under U.S. Side Impact Test Conditions

2011-04-12
2011-01-0014
Evaluations of dummy injury readings obtained in regulatory crash tests and new car assessment program tests provide indices for the development of crash safety performance in the process of developing new vehicles. Based on these indices, vehicle body structures and occupant restraint systems are designed to meet the required occupant injury criteria. There are many types of regulatory tests and new car assessment program tests that are conducted to evaluate vehicle safety performance in side impacts. Factoring all of the multiple test configurations into the development of new vehicles requires advanced design capabilities based on a good understanding of the mechanisms producing dummy injury readings. In recent years, advances in computer-aided engineering (CAE) tools and computer processing power have made it possible to run simulations of occupant restraint systems such as side airbags and seatbelts.
Technical Paper

Appling CAE to Understand the Causality of Dummy Neck Injury Readings

2011-04-12
2011-01-1069
The progress of computer technology and CAE methodology makes it possible to simulate dummy injury readings in vehicle crash simulations. Dummy neck injuries are generally more difficult to simulate than injuries to other regions such as the head or chest. Accordingly, improving the accuracy of dummy neck injury data is a major concern in frontal occupant safety simulations. This paper describes the use of an advanced airbag modeling methodology to improve the accuracy of dummy neck injury readings. First, the following items incorporated in the advanced airbag model are explained. (1) The Finite Point Method (FPM) is used to simulate the flow of gas. (2) A folding model is applied to simulate the folded condition. (3) The fabric material properties used in the simulation take into account anisotropy in the fiber directions and the nonlinear, hysteresis characteristics of stiffness.
X