Refine Your Search

Topic

Author

Search Results

Journal Article

A Demonstration of Local Heat Treatment for the Preform Annealing Process

2011-04-12
2011-01-0538
The preform annealing process is a two-stage stamping method for shaping non age-hardenable (i.e. 5000 series) aluminum sheet panels in which the panel is heat treated in between the two steps to improve overall formability of the material. The intermediate annealing heat treatment eliminates the cold work accumulated in the material during the first draw. The process enables the ability to form more complex parts than a conventional aluminum stamping process. A demonstration of local annealing for this process was conducted to form a one-piece aluminum liftgate inner panel for a large sport utility vehicle using the steel product geometry without design concessions. In prior work, this process was demonstrated by placing the entire panel in a convection oven for several minutes to completely anneal the cold work.
Technical Paper

A Fatigue Prediction Method for Spot Welded Joints

2013-04-08
2013-01-1208
Generally linear finite element analysis (FEA) is used to predict fatigue life of spot welded joints in a vehicle body structure. Therefore, the effect of plastic deformation at the vicinity of the spot welded joints is not included on fatigue prediction. This study introduces a simple technique to include the plastic deformation effect without performing elastic-plastic finite element analysis. The S-N curve obtained from fatigue test results is modified to consider this effect. Tensile strength test results of spot welded joint specimens were utilized to find the load range for FEA equivalent to the applied load range for fatigue tests. To demonstrate the proposed approach, fatigue test results of advanced high strength steels (AHSS) for lap-shear and coach peel specimens were used. Both the specimen types were tested at various constant amplitudes with the load ratios of R=0.1 and 0.3.
Technical Paper

A Methodology for Evaluating Body Architecture Concepts Using Technical Cost Modeling

2011-04-12
2011-01-0767
The ability to make accurate decisions concerning early body-in-white architectures is critical to an automaker since these decisions often have long term cost and weight impacts. We address this need with a methodology which can be used to assist in body architecture decisions using process-based technical cost modeling (TCM) as a filter to evaluate alternate designs. Despite the data limitations of early design concepts, TCM can be used to identify key trends for cost-effectiveness between design variants. A compact body-in-white architecture will be used as a case study to illustrate this technique. The baseline steel structure will be compared to several alternate aluminum intensive structures in the context of production volume.
Technical Paper

An Engineering Approach to Predict Fracture and Tearing

2011-04-12
2011-01-0002
An engineering approach was developed to extract the failure plastic strain, thinning failure strain, and major in plane failure strain for finite element simulation applications. This approach takes into account the failure strain dependency on the element size when element deletion scheme is invoked in the simulation of material fracture. Both localized necking fracture and tensile shear fracture can be predicted when appropriate elements and material models are used in LS-DYNA simulations. This leads to a more accurate prediction of fracture and tearing in the finite element simulation of vehicle structure and crash loading conditions.
Technical Paper

An Experimental and Numerical Study of the Microstructural and Mechanical Properties of an Extruded Magnesium Alloy at 450 °C and Varied Strain Rates

2013-04-08
2013-01-0976
An extruded Mg-Al-Mn (AM30) magnesium alloy was subjected to uniaxial compression along the extrusion direction (ED) and the extrusion radial direction (RaD) at 450 °C and different strain rates. The microstructure and texture of the AM30 alloy under different deformation conditions were examined. Texture evolution was characterized by electron backscatter diffraction (EBSD). The activity of different deformation modes including twinning were simulated using the visco-plastic self-consistent (VPSC) and the simplistic Sachs polycrystal plasticity models. The results show that the microstructure and the mechanical property of the Mg alloy strongly depend on the strain rate, with twinning activated at strain rates >0.5 s−1. Dynamic recrystallization and twinning interacted with each other and affected the final microstructure and mechanical property of the magnesium alloy.
Technical Paper

An Investigation of Diesel EGR Cooler Fouling and Effectiveness Recovery

2013-04-08
2013-01-0533
Diesel engine developers are continually striving to reduce harmful NOx emissions through various calibration and hardware strategies. One strategy being implemented in production Diesel engines involves utilizing cooled exhaust gas recirculation (EGR). Although there is a significant NOx reduction potential by utilizing cooled EGR, there are also several issues associated with it, such as EGR cooler fouling and a reduction in cooler effectiveness that can occur over time. The exact cause of these issues and many others related to cooler fouling are not clearly understood. One such unanswered issue or phenomenon that has been observed in both field tested and lab tested EGR coolers is that of a recovery in EGR cooler effectiveness after a shutdown or after cycling between various conditions.
Technical Paper

Analysis of Diesel Injector Nozzle Flow Number Impact on Emissions and Performance of a Euro5 Automotive Diesel Engine

2012-04-16
2012-01-0891
The present paper describes the results of a research project aimed at studying the impact of nozzle flow number on a Euro5 automotive diesel engine, featuring Closed-Loop Combustion Control. In order to optimize the trade-offs between fuel economy, combustion noise, emissions and power density for the next generation diesel engines, general trend among OEMs is lowering nozzle flow number and, as a consequence, nozzle hole size. In this context, three nozzle configurations have been characterized on a 2.0L Euro5 Common Rail Diesel engine, coupling experimental activities performed on multi-cylinder and optical single cylinder engines to analysis on spray bomb and injector test rigs. More in detail, this paper deeply describes the investigation carried out on the multi-cylinder engine, specifically devoted to the combustion evolution and engine performance analysis, varying the injector flow number.
Technical Paper

Application of Failure Plastic Strain to Quasi-Static Finite Element Analysis for Projection Weld and Strain-based Spot Weld Evaluation

2011-04-12
2011-01-1074
One of the most critical and important fracture mechanisms in a FMVSS207/210/225[1] test is the pull-thru of bolts from the body structure or spot weld separation. There are no analytically proven methods of making a judgment of pull-thru occurring except through evaluation of the plastic strain or through the thickness strain value around projection welds on Weld nut/stud bolt or spot welds. Therefore it is essential to have accurate criteria to evaluate the pull-thru. During elastic deformation, the sheet steel deforms while the quasi-static force is being applied and then returns to its original shape when the force is released. But when the force causes a stress that exceeds the yield strength, the sheet steel will permanently elongate with each additional unit of force applied, and it will not return to its original shape and size.
Technical Paper

Application of Insulation Standards to High Voltage Automotive Applications

2013-04-08
2013-01-1528
Insulation coordination requirements for electrical equipment applications are defined in various standards. The standards are defined for application to stationary mains connected equipment, like IT, power supply or industrial equipment. Protection from an electric shock is considered the primary hazard in these standards. These standards have also been used in the design of various automotive components. IEC 60664-1 is an example of the standard. Automobiles are used across the world, in various environments and in varied usage by the customers. Automobiles need to consider possible additional hazards including electric shock. This paper will provide an overview of how to adapt these standards for automotive application in the design of High Voltage (HV) automotive components, including High Voltage batteries and other HV components connected to the battery. The basic definitions from the standards and the principles are applied for usage in automotive applications.
Technical Paper

CAE-Based Approach for Oil Pan NVH Optimization of Compact Automotive Diesel Engines

2011-04-12
2011-01-0934
In the automotive industry, CAE methods are now widely used to predict several functional characteristics and to develop designs that are first-time-capable to meet programs targets. The N&V area is one of the increasing key factors for a product differentiation; costumers expect not only more powerful and more fuel efficient but also less noisy engines. The oil pan is one of the bigger contributors to engine radiated noise and to diesel knocking, so that great attention is paid within GM to optimize oil pans of Diesel engines by following a CAE-based approach to achieve a “first-time-capable” design for this component. This allows focusing the subsequent N&V testing activities to pinpoint modifications mainly on those components with shorter lead time. This paper describes the key-steps that are executed to optimize the oil pan design by using CAE methods with the main intent of reducing its noise radiation.
Technical Paper

Characterization of Mechanical Behavior of Thermoplastics with Local Deformation Measurement

2012-04-16
2012-01-0040
In quasi-static tension and compression tests of thermoplastics, full-field strain distribution on the gage section of the specimen can be captured using the two-dimensional digital image correlation method. By loading the test specimens made of a talc-filled and impact-modified polypropylene up to tensile failure and large compressive strains, this study has revealed that inhomogeneous deformation within the gage section occurs quite early for both test types. This leads to the challenge of characterizing the mechanical properties - some mechanical properties such as stress-strain relationship and fracture strain could depend on the measured section length and location. To study this problem, the true stress versus true strain curves determined locally in different regions within the gage length are compared.
Technical Paper

Comparisons of Current Concepts for Press Hardened Steel Tailor Welded Blanks and Tailor Rolled Blanks on Center Pillar Reinforcements

2011-04-12
2011-01-1059
Press hardened steels (PHS) are commonly used in automotive structural applications because of their combination of extremely high strength, load carrying capacity and the ability to form complex shapes in the press hardening process. Recent adoption of increased roof crush standards, side impact requirements and the increased focus on CO2 emissions and mass reduction have led autmotive manufacturers to significantly increase the amount of PHS being designed into future vehicle designs. As a way to further optimize the use of these steels, multi-gauge welded blanks of PHS and multi-material blanks of PHS to microalloyed steels of various thickness have been developed to help achieve these requirements. More recently, tailor rolled PHS, whereby the steel is rolled such that the thickness changes across the width of the sheet, have been developed.
Technical Paper

Design, Analysis, and Development Testing of Large Hood Plastic Mounted Trim Components

2011-04-12
2011-01-0490
Large hood mounted plastic trim components are subjected to complex and often extreme loading conditions. Typical loading conditions include solar and thermal cycling, as well as road and powertrain induced vibrations, aero lift and buffeting, and mechanical loads such as car wash. For the above components understanding and classifying the typical loading conditions is an essential and important step in achieving long term quality. This paper discusses different approaches to the design, analysis, development, and testing of plastic trim components. Samples of analysis and test results are presented to demonstrate how to identify and prevent the loss of the part function. Some useful guidelines and practices for addressing thermal expansion, dimensional variation, and redundancy in attachments are also discussed.
Technical Paper

Determination of Molding Parameter Effects on the Physical Properties of a Carbon Powder Filled, Impact Modified Acetal Copolymer

2011-04-12
2011-01-0250
Polyacetals have high strength, modulus, and chemical resistance with good dimensional stability. Because of these properties, they are used in a number of automotive applications. The injection molding process used for the molding of these components is complex and requires the adjustment of multiple process parameters to produce parts. Typically, physical tests are used to confirm that tensile strength is achieved in processing. A study was undertaken with an impact modified carbon powder filled, acetal copolymer to determine the effect of variation in process parameters on other material properties in addition to tensile strength. These material properties were measured dry as-molded and after exposure to heat and to a test fluid. It was determined that in the case of this specific polymer, the barrel temperature, and to a lesser extent the cooling time during processing, affected the strain at break.
Journal Article

Determination of Used Crankcase Oil Condition by Capillary Electrophoresis Analysis of Extracted Organic Acids

2009-11-02
2009-01-2689
Organic acid degradation products and other anions in engine oil were speciated by capillary electrophoresis (CE) and liquid chromatography-mass spectrometry (LCMS) with electrospray ionization. The sample preparation procedure involved selectively extracting the acids and other water soluble salts into 0.05M aqueous potassium hydroxide. Samples of engine-aged mineral oil and synthetic engine oil contained formic acid, acetic acid, and complex mixtures of fatty acid degradation products. CE analysis of formic acid, acetic acid and selected fatty acids is proposed as a new chemical analysis method for evaluating the condition of engine oil and for studying the effects of high temperature-high load (HTHL) oxidation. Because the overall pattern of CE peaks in the electropherogram changes with oil age or condition, CE-fingerprint (i.e., pattern recognition) techniques may also be useful for evaluating an aged oil's condition or remaining service life.
Journal Article

Development of Additional SAE J2643 Standard Reference Elastomers

2011-04-12
2011-01-0017
The first set of SAE J2643 Standard Reference Elastomers (SRE) was developed in 2004. It was composed of a group of 10 compounds covering multiple elastomer families. Since then, more advanced materials from many elastomer families have been introduced to the automotive industry. The purpose of this study is to add a few more reference compounds to SAE J2643, to enhance the portfolio on FKM, AEM and ACM to reflect advancements in elastomer technology, and make it suitable for a variety of fluids, such as transmission fluid and engine oil. Fourteen standard elastomer compounds were involved in this study, covering various materials currently used in automotive powertrain static and dynamic sealing applications. Participants include OEMs, major rubber manufacturers, a fluid additive company and an independent lab. Manufacturers of each test compound provided formulations, designated ingredients from defined sources, and detailed mixing and molding procedures.
Journal Article

Development of High-Power and High-Efficiency Motor for a Newly Developed Electric Vehicle

2012-04-16
2012-01-0342
This paper describes the development of the drive motor used on a newly developed electric vehicle (EV) that has been specifically designed and engineered as the world's first mass-produced EV. Producing maximum torque of 280 Nm and maximum power of 80 kW, this synchronous motor was selected as the first electrified powertrain to be named to Ward's 10 Best Engines list for 2011. In developing this motor, magnetic field simulations were conducted in the process of adopting the following in-house technologies to achieve a compact motor size, high output and high efficiency. The rotor shape has the interior permanent magnets arranged in a ▽-shaped that achieves a superior balance of torque and power. The flux barriers located on the outer periphery are designed to reduce iron loss. The V-shaped flux barriers provide both excellent mechanical strength and outstanding performance during high-speed motor operation.
Technical Paper

Development of Hydrogen-Free Diamond-Like Carbon Coating for Piston Rings

2012-04-16
2012-01-1327
The first-ever application of a hydrogen-free diamond-like carbon (H free DLC) coating to a mass-production gasoline engine reduces friction between the cylinder bore and piston by 18%. It is explained the reducing friction effect of H free DLC by oil film thickness of piston ring. When H-free DLC is applied to top ring, friction is over 10% reduced. Because low friction coating is effective in a thin oil film at a large area near top dead center (TDC). It is also found that the friction reduction effect is enhanced when low viscosity engine oil is used. DLC as a low friction coating is more effective in a thinner oil film. In this study, the adhesion strength of H-free DLC coating on piston rings is improved because of providing a smooth substrate, the new washing process and the optimized coating characteristics. Adhesion strength is verified by test results using actual parts considered to contribute to piston ring load.
Technical Paper

Development of Interior Stain Removal Technology

2012-04-16
2012-01-0511
Customers desire to keep the interior of their vehicles as clean as possible. A field survey was made of the types of dirt and stains found on interior trim parts as the starting point for the development of products that meet this need. The survey findings showed that soiled stains resulting from long periods of use are commonly found on seat surfaces and cloth seats also have beverage stains. Dirt stains are typically seen on plastic trim parts. An analysis of the components of soiled stains revealed the presence of higher fatty acids that tend to adhere to the urethane coating on the surface of genuine leather seat covers and to the polyester fibers of cloth seat covers. A coating technology was then developed for bringing dirt to the surface so that it can be easily removed by wiping with a wet cloth.
Journal Article

Development of Liftgate Hinge-to-Roof Sealing Gasket Material for Uncoated Steel Roof Panels

2011-04-12
2011-01-0072
The sealing of a lift gate hinge to the body structure is necessary to avoid both the onset of corrosion and to avoid water intrusion into the interior compartment. The hinge-to-body interface typically involves horizontal metal-to-metal surface contact, creating the perfect environment for moisture entrapment and corrosion initiation. The choice of body panel material (uncoated (bare) steel vs. coated (galvanized) steel) drives different sealing approaches especially when considering corrosion avoidance.
X