Refine Your Search

Topic

Author

Search Results

Technical Paper

21SIAT-0638 - Fleet Analytics - A Data-Driven and Synergetic Fleet Validation Approach

2021-09-22
2021-26-0499
Current developments in automotive industry such as hybrid powertrains and the continuously increasing demands on emission control systems, are pushing complexity still further. Validation of such systems lead to a huge amount of test cases and hence extreme testing efforts on the road. At the same time the pressure to reduce costs and minimize development time is creating challenging boundaries on development teams. Therefore, it is of utmost importance to utilize testing and validation prototypes in the most efficient way. It is necessary to apply high levels of instrumentation and collect as much data as possible. And a streamlined data pipeline allows the fleet managers to get new insights from the raw data and control the validation vehicles as well as the development team in the most efficient way. In this paper we will demonstrate a data-driven approach for validation testing.
Technical Paper

360° vs. 270° vs. 180°: The Difference of Balancing a 2 Cylinder Inline Engine: Design, Simulation, Comparative Measurements

2012-10-23
2012-32-0106
Beside the automotive industry, where 2-cylinder inline engines are catching attention again, twin-cylinder configurations are quite usual in the small engine world. From stationary engines and range-extender use to small motorcycles up to big cruisers and K-Cars this engine architecture is used in many types of applications. Because of very good overall packaging, performance characteristics and not least the possibility of parts-commonality with 4-cylinder engines nearly every motorcycle manufacturer provides an inline twin in its model range. Especially for motorcycle applications where generally the engine is a rigid member of the frame and vibrations can be transferred directly to the rider an appropriate balancing system is required.
Journal Article

A Computational Approach to Assess Buffeting and Broadband Noise Generated by a Vehicle Sunroof

2015-04-14
2015-01-1532
Car manufacturers put large efforts into reducing wind noise to improve the comfort level of their cars. Each component of the vehicle is designed to meet its individual noise target to ensure the wind noise passenger comfort level inside the vehicle is met. Sunroof designs are tested to meet low-frequency buffeting (also known as boom) targets and broadband noise targets for the fully open sunroof with deflector and for the sunroof in vent position. Experimentally testing designs and making changes to meet these design targets typically involves high cost prototypes, expensive wind tunnel sessions, and potentially late design changes. To reduce the associated costs as well as development times, there is strong motivation for the use of a reliable numerical prediction capability early in the vehicle design process.
Technical Paper

A Pragmatic Model-Based Product Engineering Process

2014-04-01
2014-01-0308
Complexity of electronics and embedded software systems in automobiles has been increasing over the years. This necessitates the need for an effective and exhaustive development and validation process in order to deliver fault free vehicles at reduced time to market. Model-based Product Engineering (MBPE) is a new process for development and validation of embedded control software. The process is generic and defines the engineering activities to plan and assess the progress and quality of the software developed for automotive applications. The MBPE process is comprised of six levels (one design level and five verification and validation levels) ranging from the vehicle requirements phase to the start of production. The process describes the work products to be delivered during the course of product development and also aligns the delivery plan to overall vehicle development milestones.
Journal Article

Accelerated Fatigue and Modal Parameter Identification of Lightweight Structures

2014-06-30
2014-01-2095
Car components are exposed to the random/harmonic/impact excitation which can result in component failure due to vibration fatigue. The stress and strain loads do depend on local stress concentration effects and also on the global structural dynamics properties. Standardized fatigue testing is long-lasting, while the dynamic fatigue testing can be much faster; however, the dynamical changes due to fatigue are usually not taken into account and therefore the identified fatigue and structural parameters can be biased. In detail: damage accumulation results in structural changes (stiffness, damping) which are hard to measure in real time; further, structural changes change the dynamics of the loaded system and without taking this changes into account the fatigue load in the stress concentration zone can change significantly (even if the excitation remains the same). This research presents a new approach for accelerated vibration testing of real structures.
Technical Paper

Adding Depth: Establishing 3D Display Fundamentals for Automotive Applications

2015-04-14
2015-01-0147
The advent of 3D displays offers Human-Machine Interface (HMI) designers and engineers new opportunities to shape the user's experience of information within the vehicle. However, the application of 3D displays to the in-vehicle environment introduces a number of new parameters that must be carefully considered in order to optimise the user experience. In addition, there is potential for 3D displays to increase driver inattention, either through diverting the driver's attention away from the road or by increasing the time taken to assimilate information. Manufacturers must therefore take great care in establishing the ‘do’s and ‘don’t's of 3D interface design for the automotive context, providing a sound basis upon which HMI designers can innovate. This paper describes the approach and findings of a three-part investigation into the use of 3D displays in the instrument cluster of a road car, the overall aim of which was to define the boundaries of the 3D HMI design space.
Journal Article

Advances in Experimental Vehicle Soiling Tests

2020-04-14
2020-01-0681
The field of vision of the driver during wet road conditions is essential for safety at all times. Additionally, the safe use of the increasing number of sensors integrated in modern cars for autonomous driving and intelligent driver assistant systems has to be ensured even under challenging weather conditions. To fulfil these requirements during the development process of new cars, experimental and numerical investigations of vehicle soiling are performed. This paper presents the surface contamination of self- and foreign-soiling tested in the wind tunnel. For these type of tests, the fluorescence method is state-of-the-art and widely used for visualizing critical areas. In the last years, the importance of parameters like the contact angle have been identified when designing the experimental setup. In addition, new visualization techniques have been introduced.
Technical Paper

An Initial Study to Develop Appropriate Warning Sound for a Luxury Vehicle Using an Exterior Sound Simulator

2011-05-17
2011-01-1727
Many electric (EV) and hybrid-electric (HEV) vehicles are designed to operate using only electric propulsion at low road speeds. This has resulted in significantly reduced vehicle noise levels in urban situations. Although this may be viewed by many as a benefit, a risk to safety exists for those who rely on the engine noise to help detect the presence, location and behaviour of a vehicle in their vicinity. In recognition of this, legislation is being introduced globally which will require automotive manufacturers to implement external warning sound systems. A key challenge for premium vehicle manufacturers is the development of a suitable warning sound signature which also conveys the appropriate brand aspirations for the product. A further major difficulty exists when trying to robustly evaluate potential exterior sounds by running large-scale trials in the real world.
Journal Article

Assessing the Aeroacoustic Response of a Vehicle to Transient Flow Conditions from the Perspective of a Vehicle Occupant

2014-04-01
2014-01-0591
On-road, a vehicle experiences unsteady flow conditions due to turbulence in the natural wind, moving through the unsteady wakes of other road vehicles and travelling through the stationary wakes generated by roadside obstacles. Separated flow structures in the sideglass region of a vehicle are particularly sensitive to unsteadiness in the onset flow. These regions are also areas where strong aeroacoustic effects can exist, in a region close to the passengers of a vehicle. The resulting aeroacoustic response to unsteadiness can lead to fluctuations and modulation at frequencies that a passenger is particularly sensitive towards. Results presented by this paper combine on-road measurement campaigns using instrumented vehicles in a range of different wind environments and aeroacoustic wind tunnel tests.
Technical Paper

Automated EMS Calibration using Objective Driveability Assessment and Computer Aided Optimization Methods

2002-03-04
2002-01-0849
Future demands regarding emissions, fuel consumption and driveability lead to complex engine and power train control systems. The calibration of the increasing number of free parameters in the ECU's contradicts the demand for reduced time in the power train development cycle. This paper will focus on the automatic, unmanned closed loop optimization of driveability quality on a high dynamic engine test bed. The collaboration of three advanced methods will be presented: Objective real time driveability assessment, to predict the expected feelings of the buyers of the car Automatic computer assisted variation of ECU parameters on the basis of statistical methods like design of experiments (DoE). Thus data are measured in an automated process allowing an optimization based on models (e.g. neural networks).
Journal Article

Comprehensive Array Measurements of In-Car Sound Field in Magnitude and Phase for Active Sound Generation and Noise Control

2014-06-30
2014-01-2046
When employing in-car active sound generation (ASG) and active noise cancellation (ANC), the accurate knowledge of the vehicle interior sound pressure distribution in magnitude as well as phase is paramount. Revisiting the ANC concept, relevant boundary conditions in spatial sound fields will be addressed. Moreover, within this study the controllability and observability requirements in case of ASG and ANC were examined in detail. This investigation focuses on sound pressure measurements using a 24 channel microphone array at different heights near the head of the driver. A shaker at the firewall and four loudspeakers of an ordinary in-car sound system have been investigated in order to compare their sound fields. Measurements have been done for different numbers of passengers, with and without a dummy head and real person on the driver seat. Transfer functions have been determined with a log-swept sine technique.
Journal Article

Cyclic Stress-Strain Behaviour of AM60B and AE44 Cast Magnesium Alloys and Its Impact on LCF Characterisation and Fatigue Analysis

2014-04-01
2014-01-0969
Light weight alloys are widely used in the automotive industry in order to meet environmental requirements. Cast magnesium alloys are candidate materials due to their high strength to weight ratio, high stiffness and excellent castability. However, some previously reported anomalous cyclic stress-strain behaviours of magnesium alloys have not been fully investigated especially in LCF characterisation. The main objective of this work was to investigate the cyclic loading-unloading behaviour of high pressure die cast (HPDC) AM60B and AE44 magnesium alloys under uniaxial tension or/and compression and its effect on LCF behaviour. It was found that classical linear stress-strain behaviour, for both AM60B and AE44 alloys, applied only to a very small range of stress beyond which significant pseudo-elastic behaviour was discovered. This affected LCF characterisation and subsequent fatigue analysis processes.
Technical Paper

Fatigue Strength Effect of Thread Forming Process in Cast Aluminum

2006-04-03
2006-01-0780
Two thread forming processes, rolling and cutting, were studied for their effects on fatigue in cast aluminum 319-T7. Material was excised from cylinder blocks and tested in rotating-bending fatigue in the form of unnotched and notched specimens. The notched specimens were prepared by either rolling or cutting to replicate threads in production-intent parts. Cut threads exhibited conventional notch behavior for notch sensitive materials. In contrast, plastic deformation induced by rolling created residual compressive stresses in the notch root and significantly improved fatigue strength to the point that most of the rolled specimens broke outside the notch. Fractographic and metallographic investigation showed that cracks at the root of rolled notches were deflected upon initiation. This lengthened their incubation period, which effectively increased fatigue resistance.
Technical Paper

How Advances in On-Road NVH Simulator Technology Have Enabled Firm Targets for Delivery at the Concept Phase

2009-05-19
2009-01-2178
One of the great challenges of the NVH development process is to ensure that customers and stakeholders in the vehicle team are involved in sound quality decision making throughout a new vehicle programme. Recent developments of interactive NVH simulators have enabled a cost-effective customer-focused method for capturing the opinions and decision making processes of people who are not NVH experts. This paper describes the latest enhancement to the NVH Simulator approach which allows the sounds of virtual vehicles to be evaluated whilst driving on-road. The sounds are created and presented to the driver in such a way that they appear totally natural and the assessor is not aware that they are synthesized. Since the subjective evaluations are performed on normal roads, key decision makers can understand, sign up with confidence to, and appreciate the value of the proposed sounds.
Technical Paper

Industrialization of the Commercial Hydrogen Engine till 2025

2024-01-16
2024-26-0167
India striving for carbon neutrality influences futures powertrain architecture of commercial vehicles. The use of CO2-free drives as battery electric have been demonstrated for various applications. The productivity still is a challenge due to missing high power charging infrastructure or limited range. This draws the attention to the use of sustainable fuels due to lower refueling times. The hydrogen engine got highest attention in the last couple of years. For markets as the EU the driver for hydrogen is the CO2 emission reduction, whereas for markets as India hydrogen offers the additional opportunity for more independence from fossil imports. Different OEMs all over the world have converted diesel engines to hydrogen operation with strong focus on performance and emission demonstration, so far with limited technology readiness of different key components.
Technical Paper

Model-Based Approach for Engine Performance Optimization

2018-10-30
2018-32-0082
State-of-the-art motorcycle engines consist of numerous variable components and require a powerful motor management to meet the growing customer expectations and the legislative requirements (e.g. exhaust and noise emissions, fuel consumption) at the same time. These demands are often competing and raise the level of complexity in calibration. In the racing domain, the optimization requirements are usually higher and test efficiency is crucial. Whilst the number of variables to control is growing, the time to perform an engine optimization remains the same or is even shortened. Therefore, simulation is becoming an essential part of the engine calibration optimization. Considering the special circumstances in racing, involving valuable hardware, as well as extremely short development and calibration iteration loops, only transient testing is possible.
Journal Article

Modelling A-Pillar Water Overflow: Developing CFD and Experimental Methods

2012-04-16
2012-01-0588
Water accumulating on a vehicle's wind screen, driven over the A-pillar by a combination of aerodynamic forces and the action of the windscreen wipers, can be a significant impediment to driver vision. Surface water film, or streams, persisting in key vision areas of the side glass can impair the drivers' ability to see clearly through to the door mirror, and laterally onto junctions. Common countermeasures include: water management channels and hydrophobic glass coatings. Water management channels have both design and wind noise implications. Hydrophobic coatings entail significant cost. In order to manage this design optimisation issue a water film and wiper effect model has been developed in collaboration with Jaguar Land Rover, extending the capabilities of the PowerFLOW CFD software. This is complimented by a wind-tunnel based test method for development and validation. The paper presents the progress made to date.
Technical Paper

Numerical Investigation of Wiper Drawback

2019-04-02
2019-01-0640
Windscreen wipers are an integral component of the windscreen cleaning systems of most vehicles, trains, cars, trucks, boats and some planes. Wipers are used to clear rain, snow, and dirt from the windscreen pushing the water from the wiped surface. Under certain conditions however, water which has been driven to the edge of the windscreen by the wiper can be drawn back into the driver’s field of view by aerodynamic forces introduced by the wiper motion. This is wiper drawback, an undesirable phenomenon as the water which is drawn back on to the windscreen can reduce driver’s vision and makes the wiper less effective. The phenomena of wiper drawback can be tested for in climatic tunnels using sprayer systems to wet the windscreen. However, these tests require a bespoke test property or prototype vehicle, which means that the tests are done fairly late in the development of the vehicle.
Technical Paper

On-board Optimization of Driveability Character Depending on Driver Style by Using a New Closed Loop Approach

2001-03-05
2001-01-0556
The paper describes a new methodology for a closed loop driving style detection, a vehicle driveability character evaluation and a control unit for an adaptation of the vehicle character according to the driving style. During driving the vehicle character is adapted to the driver, using the potential of modern torque based drive by wire engine control systems of gasoline and diesel engines. The methodology leads to a completely new human - vehicle interaction, the driver creates his own unique vehicle character. The vehicle owner is able to form a mass produced vehicle according to his demands. A typical drawback of globalisation, a loss of identification between owner and product can be avoided by the presented methodology. The basic structure of the evaluation and control strategies are shown as well as objective and subjective results of increased driving pleasure and higher driver identification due to increased sportiness and spontaneity up to 100%.
Technical Paper

Parameterization of an Electrochemical Battery Model Using Impedance Spectroscopy in a Wide Range of Frequency

2024-04-09
2024-01-2194
The parameterization of the electrochemical pseudo-two-dimensional (P2D) model plays an important role as it determines the acceptance and application range of subsequent simulation studies. Electrochemical impedance spectroscopy (EIS) is commonly applied to characterize batteries and to obtain the exchange current density and the solid diffusion coefficient of a given electrode material. EIS measurements performed with frequencies ranging from 1 MHz down to 10 mHz typically do not cover clearly isolated solid state diffusion processes of lithium ions in positive or negative electrode materials. To extend the frequency range down to 10 μHz, the distribution function of relaxation times (DRT) is a promising analysis method. It can be applied to time-domain measurements where the battery is excited by a current pulse and relaxed for a certain period.
X