Refine Your Search

Search Results

Viewing 1 to 3 of 3
Journal Article

Comparison of Near-Field Structure and Growth of a Diesel Spray Using Light-Based Optical Microscopy and X-Ray Radiography

2014-04-01
2014-01-1412
A full understanding and characterization of the near-field of diesel sprays is daunting because the dense spray region inhibits most diagnostics. While x-ray diagnostics permit quantification of fuel mass along a line of sight, most laboratories necessarily use simple lighting to characterize the spray spreading angle, using it as an input for CFD modeling, for example. Questions arise as to what is meant by the “boundary” of the spray since liquid fuel concentration is not easily quantified in optical imaging. In this study we seek to establish a relationship between spray boundary obtained via optical diffused backlighting and the fuel concentration derived from tomographic reconstruction of x-ray radiography. Measurements are repeated in different facilities at the same specified operating conditions on the “Spray A” fuel injector of the Engine Combustion Network, which has a nozzle diameter of 90 μm.
Journal Article

High-Resolution X-Ray and Neutron Computed Tomography of an Engine Combustion Network Spray G Gasoline Injector

2017-03-28
2017-01-0824
Given the importance of the fuel-injection process on the combustion and emissions performance of gasoline direct injected engines, there has been significant recent interest in understanding the fluid dynamics within the injector, particularly around the needle and through the nozzles. The pressure losses and transients that occur in the flow passages above the needle are also of interest. Simulations of these injectors typically use the nominal design geometry, which does not always match the production geometry. Computed tomography (CT) using x-ray and neutron sources can be used to obtain the real geometry from production injectors, but there are trade-offs in using these techniques. X-ray CT provides high resolution, but cannot penetrate through the thicker parts of the injector. Neutron CT has excellent penetrating power but lower resolution.
Journal Article

Internal Nozzle Flow Simulations of the ECN Spray C Injector under Realistic Operating Conditions

2020-04-14
2020-01-1154
In this study, three-dimensional large eddy simulations were performed to study the internal nozzle flow of the ECN Spray C diesel injector. Realistic nozzle geometry, full needle motion, and internal flow imaging data obtained from X-ray measurements were employed to initialize and validate the CFD model. The influence of injection pressure and fuel properties were investigated, and the effect of mesh size was discussed. The results agreed well with the experimental data of mass flow rate and correctly captured the flow structures inside the orifice. Simulations showed that the pressure drop near the sharp orifice inlet triggered flow separation, resulting in the ingestion of ambient gas into the orifice via a phenomenon known as hydraulic flip. At higher injection pressure, the pressure drop was more significant as the liquid momentum increased and the stream inertia was less prone to change its direction.
X