Refine Your Search

Topic

Author

Search Results

Technical Paper

Ammonia Production and Utilization in a Hybrid LNT+SCR System

2009-11-02
2009-01-2739
A hybrid LNT+SCR system is used to control NOx from a light-duty diesel engine with in-cylinder regeneration controls. A diesel oxidation catalyst and diesel particulate filter are upstream of the LNT and SCR catalysts. Ultraviolet (UV) adsorption spectroscopy performed directly in the exhaust path downstream of the LNT and SCR catalysts is used to characterize NH3 production and utilization in the system. Extractive exhaust samples are analyzed with FTIR and magnetic sector mass spectrometry (H2) as well. Furthermore, standard gas analyzers are used to complete the characterization of exhaust chemistry. NH3 formation increases strongly with extended regeneration (or “over regeneration”) of the LNT, but the portion of NOx reduction occurring over the SCR catalyst is limited by the amount of NH3 produced as well as the amount of NOx available downstream of the LNT. Control of lean-rich cycling parameters enables control of the ratio of NOx reduction between the LNT and SCR catalysts.
Technical Paper

Axial NO2 Utilization Measurements within a Partial Flow Filter during Passive Regeneration

2017-03-28
2017-01-0988
Measuring axial exhaust species concentration distributions within a wall-flow aftertreatment device provides unique and significant insights regarding the performance of complex devices like the SCR-on-filter. In this particular study, a less complex aftertreatment configuration which includes a DOC followed by two uncoated partial flow filters (PFF) was used to demonstrate the potential and challenges. The PFF design in this study was a particulate filter with alternating open and plugged channels. A SpaciMS [1] instrument was used to measure the axial NO2 profiles within adjacent open and plugged channels of each filter element during an extended passive regeneration event using a full-scale engine and catalyst system. By estimating the mass flow through the open and plugged channels, the axial soot load profile history could be assessed.
Technical Paper

Cetane Number and Engine Speed Effects on Diesel HCCI Performance and Emissions

2005-10-24
2005-01-3723
The effects of cetane number (CN) on homogeneous charge compression ignition (HCCI) performance and emissions were investigated in a single cylinder engine using intake air temperature for control. Blends of the diesel secondary reference fuels for cetane rating were used to obtain a CN range from 19 to 76. Sweeps of intake air temperature at a constant fueling were performed. Low CN fuels needed to be operated at higher intake temperatures than high CN fuels to achieve ignition. As the intake air temperature was reduced for a given fuel, the combustion phasing was retarded, and each fuel passed through a phasing point of maximum indicated mean effective pressure (IMEP). Early combustion phasing was required for the high CN fuels to prevent misfire, whereas the maximum IMEP for the lowest CN fuel occurred at a phasing 10 crank angle degrees (CAD) later.
Technical Paper

Characterization of In-Cylinder Techniques for Thermal Management of Diesel Aftertreatment

2007-10-29
2007-01-3997
One challenge in meeting emission regulations with catalytic aftertreatment systems is maintaining the proper catalyst temperatures that enable the catalytic devices to perform the emissions reduction. In this study, in-cylinder techniques are used to actively control the temperature of a catalyzed diesel particulate filter (DPF) in order to raise the DPF temperature to induce particulate oxidation. The performance of four strategies is compared for two different starting DPF temperatures (150°C and 300°C) on a 4-cylinder 1.7-liter diesel engine. The four strategies include: (1) addition of extra fuel injection early in the combustion cycle for all four cylinders, (2) addition of extra fuel injection late in the combustion cycle for all four cylinders, (3) operating one-cylinder with extra fuel injection early in the combustion cycle, and (4) operating one-cylinder with extra fuel injection late in the combustion cycle.
Journal Article

Comparative Study of Hybrid Powertrains on Fuel Saving, Emissions, and Component Energy Loss in HD Trucks

2014-09-30
2014-01-2326
Two hybrid powertrain configurations, including parallel and series hybrids, were simulated for fuel economy, component energy loss, and emissions control in Class 8 trucks over both city and highway driving conditions. A comprehensive set of component models describing engine fuel consumption, emissions control, battery energy, and accessory power demand interactions was developed and integrated with the simulated hybrid trucks to identify heavy-duty (HD) hybrid technology barriers. The results show that series hybrid is absolutely negative for fuel-economy improvement of long-haul trucks due to an efficiency penalty associated with the dual-step conversions of energy (i.e. mechanical to electric to mechanical).
Technical Paper

Continuous Particulate Filter State of Health Monitoring Using Radio Frequency Sensing

2018-04-03
2018-01-1260
Reliable means for on-board detection of particulate filter failures or malfunctions are needed to meet diagnostics (OBD) requirements. Detecting these failures, which result in tailpipe particulate matter (PM) emissions exceeding the OBD limit, over all operating conditions is challenging. Current approaches employ differential pressure sensors and downstream PM sensors, in combination with particulate filter and engine-out soot models. These conventional monitors typically operate over narrowly-defined time windows and do not provide a direct measure of the filter’s state of health. In contrast, radio frequency (RF) sensors, which transmit a wireless signal through the filter substrate provide a direct means for interrogating the condition of the filter itself.
Technical Paper

Design and Testing of a Thermal Storage System for Electric Vehicle Cabin Heating

2016-04-05
2016-01-0248
Without the waste heat available from the engine of a conventional automobile, electric vehicles (EVs) must provide heat to the cabin for climate control using energy stored in the vehicle. In current EV designs, this energy is typically provided by the traction battery. In very cold climatic conditions, the power required to heat the EV cabin can be of a similar magnitude to that required for propulsion of the vehicle. As a result, the driving range of an EV can be reduced very significantly during winter months, which limits consumer acceptance of EVs and results in increased battery costs to achieve a minimum range while ensuring comfort to the EV driver. To minimize the range penalty associated with EV cabin heating, a novel climate control system that includes thermal energy storage has been designed for use in EVs and plug-in hybrid electric vehicles (PHEVs). The system uses the stored latent heat of an advanced phase change material (PCM) to provide cabin heating.
Technical Paper

Development of an Accelerated Ash Loading Protocol for Diesel Particulate Filters

2008-10-06
2008-01-2496
The accelerated ash loading of diesel particulate filters (DPFs) with diesel oxidation catalysts (DOCs) mounted upstream by lube-oil derived products was investigated using a single cylinder diesel engine and fuel blended with 5% lube oil. An ash loading protocol is developed which combines soot loading, active soot regeneration, and periodic shutdowns for filter weighing. Active regeneration is accomplished by exhaust injection of diesel fuel, initiated by a backpressure criteria and providing DPF temperatures up to 700°C. In developing this protocol, five DPFs of various combinations of substrates (cordierite, silicon carbide, and mullite) and washcoats (none, low PGM, and high PGM) are used and evaluated. The initial backpressure and rate of backpressure increase with ash varied with each of the DPFs and ash was observed to have an effect on the active soot light-off temperature for the catalyzed DPFs.
Journal Article

Diesel EGR Cooler Fouling

2008-10-06
2008-01-2475
The buildup of deposits in EGR coolers causes significant degradation in heat transfer performance, often on the order of 20-30%. Deposits also increase pressure drop across coolers and thus may degrade engine efficiency under some operating conditions. It is unlikely that EGR cooler deposits can be prevented from forming when soot and HC are present. The presence of cooled surfaces will cause thermophoretic soot deposition and condensation of HC and acids. While this can be affected by engine calibration, it probably cannot be eliminated as long as cooled EGR is required for emission control. It is generally felt that “dry fluffy” soot is less likely to cause major fouling than “heavy wet” soot. An oxidation catalyst in the EGR line can remove HC and has been shown to reduce fouling in some applications. The combination of an oxidation catalyst and a wall-flow filter largely eliminates fouling. Various EGR cooler designs affect details of deposit formation.
Technical Paper

EGR Cooler Performance and Degradation: Effects of Biodiesel Blends

2008-10-06
2008-01-2473
Exhaust gas recirculation (EGR) coolers experience degradation of performance as a result of the buildup of material in the gas-side flow paths of the cooler. This material forms a deposit layer that is less thermally conductive than the stainless steel of the tube enclosing the gas, resulting in lower heat exchanger effectiveness. Biodiesel fuel has a fuel chemistry that is much more susceptible to polymerization than that of typical diesel fuels and may exacerbate deposit formation in EGR coolers. A study was undertaken to examine the fundamentals of EGR cooler deposit formation by using surrogate tubes to represent the EGR cooler. These tubes were exposed to engine exhaust in a controlled manner to assess their effectiveness, deposit mass, and deposit hydrocarbon content. The tubes were exposed to exhaust for varying lengths of time and for varying coolant temperatures. The results show that measurable differences in the response variables occur within a few hours.
Journal Article

EGR Dilution and Fuel Property Effects on High-Efficiency Spark-Ignition Flames

2021-04-06
2021-01-0483
Modern spark ignition internal combustion engines rely on fast combustion rates and high dilution to achieve high brake thermal efficiencies. To accomplish this, new engine designs have moved towards increased tumble ratios and stroke-to-bore ratios. Increased tumble ratios correlate positively with increases in turbulent kinetic energy and improved fuel and residual gas mixing, all of which favor faster and more efficient combustion. Longer stroke-to-bore ratios allow higher geometric compression ratios and use of late intake valve closing to control peak compression pressures and temperatures. The addition of dilution to improve efficiency is limited by the resulting increase in combustion instabilities manifested by cycle-to-cycle variability.
Technical Paper

Effects of Air Conditioner Use on Real-World Fuel Economy

2013-04-08
2013-01-0551
On-road and laboratory experiments with a 2009 Ford Explorer and a 2009 Toyota Corolla were conducted to assess the fuel consumption penalty associated with air conditioner (A/C) use at idle and highway cruise conditions. Vehicle data were acquired on-road and on a chassis dynamometer. Data were gathered for various A/C settings and with the A/C off and the windows open. At steady speeds between 64.4 and 113 kph (40 and 70 mph), both vehicles consumed more fuel with the A/C on at maximum cooling load (compressor at 100% duty cycle) than when driving with the windows down. The Explorer maintained this trend beyond 113 kph (70 mph), while the Corolla fuel consumption with the windows down matched that of running the A/C at 121 kph (75 mph), and exceeded it at 129 kph (80 mph). The incremental fuel consumption rate penalty due to air conditioner use was nearly constant with a slight trend of increasing consumption with increasing vehicle (and compressor) speed.
Technical Paper

Effects of Diesel Fuel Sulfur Level on Performance of a Continuously Regenerating Diesel Particulate Filter and a Catalyzed Particulate Filter

2000-06-19
2000-01-1876
This paper reports the test results from the DPF (diesel particulate filter) portion of the DECSE (Diesel Emission Control - Sulfur Effects) Phase 1 test program. The DECSE program is a joint government and industry program to study the impact of diesel fuel sulfur level on aftertreatment devices. A systematic investigation was conducted to study the effects of diesel fuel sulfur level on (1) the emissions performance and (2) the regeneration behavior of a continuously regenerating diesel particulate filter and a catalyzed diesel particulate filter. The tests were conducted on a Caterpillar 3126 engine with nominal fuel sulfur levels of 3 parts per million (ppm), 30 ppm, 150 ppm and 350 ppm.
Technical Paper

Emission Performance of Low Cetane Naphtha as Drop-In Fuel on a Multi-Cylinder Heavy-Duty Diesel Engine and Aftertreatment System

2017-03-28
2017-01-1000
Greenhouse gas regulations and global economic growth are expected to drive a future demand shift towards diesel fuel in the transportation sector. This may create a market opportunity for cost-effective fuels in the light distillate range if they can be burned as efficiently and cleanly as diesel fuel. In this study, the emission performance of a low cetane number, low research octane number naphtha (CN 34, RON 56) was examined on a production 6-cylinder heavy-duty on-highway truck engine and aftertreatment system. Using only production hardware, both the engine-out and tailpipe emissions were examined during the heavy-duty emission testing cycles using naphtha and ultra-low-sulfur diesel (ULSD) fuels. Without any modifications to the hardware and software, the tailpipe emissions were comparable when using either naphtha or ULSD on the heavy duty test cycles.
Journal Article

Evaluation of Fuel-Borne Sodium Effects on a DOC-DPF-SCR Heavy-Duty Engine Emission Control System: Simulation of Full-Useful Life

2016-10-17
2016-01-2322
For renewable fuels to displace petroleum, they must be compatible with emissions control devices. Pure biodiesel contains up to 5 ppm Na + K and 5 ppm Ca + Mg metals, which have the potential to degrade diesel emissions control systems. This study aims to address these concerns, identify deactivation mechanisms, and determine if a lower limit is needed. Accelerated aging of a production exhaust system was conducted on an engine test stand over 1001 h using 20% biodiesel blended into ultra-low sulfur diesel (B20) doped with 14 ppm Na. This Na level is equivalent to exposure to Na at the uppermost expected B100 value in a B20 blend for the system full-useful life. During the study, NOx emissions exceeded the engine certification limit of 0.33 g/bhp-hr before the 435,000-mile requirement.
Technical Paper

Experimental Investigation of Low Cost, Low Thermal Conductivity Thermal Barrier Coating on HCCI Combustion, Efficiency, and Emissions

2020-04-14
2020-01-1140
In-cylinder surface temperature is of heightened importance for Homogeneous Charge Compression Ignition (HCCI) combustion since the combustion mechanism is thermo-kinetically driven. Thermal Barrier Coatings (TBCs) selectively manipulate the in-cylinder surface temperature, providing an avenue for improving thermal and combustion efficiency. A surface temperature swing during combustion/expansion reduces heat transfer losses, leading to more complete combustion and reduced emissions. At the same time, achieving a highly dynamic response sidesteps preheating of charge during intake and eliminates the volumetric efficiency penalty. The magnitude and temporal profile of the dynamic surface temperature swing is affected by the TBC material properties, thickness, morphology, engine speed, and heat flux from the combustion process. This study follows prior work of authors with Yttria Stabilized Zirconia, which systematically engineered coatings for HCCI combustion.
Journal Article

Failure Stress and Apparent Elastic Modulus of Diesel Particulate Filter Ceramics

2012-04-16
2012-01-1252
Three established mechanical test specimen geometries and test methods used to evaluate mechanical properties of brittle materials are adapted to the diesel particulate filter (DPF) architecture to evaluate failure initiation stress and apparent elastic modulus of the ceramics comprising DPFs. The three custom-designed test coupons are harvested out of DPFs to promote a particular combination of orientation of crack initiation and crack plane. The testing of the DPF biaxial flexure disk produces a radial tensile stress and a crack plane parallel with the DPF's longitudinal axis. The testing of the DPF sectored flexural specimen produces axial tension at the DPF's OD and a crack plane perpendicular to the DPF's longitudinal axis. The testing of the DPF o-ring specimen produces hoop tension at the DPF's original outer diameter (OD) and at the inner diameter of the test coupon, and a crack plane parallel to the DPF's longitudinal axis.
Technical Paper

Filter-based control of particulate matter from a lean gasoline direct injection engine

2016-04-05
2016-01-0937
New regulations requiring increases in vehicle fuel economy are challenging automotive manufacturers to identify fuel-efficient engines for future vehicles. Lean gasoline direct injection (GDI) engines offer significant increases in fuel efficiency over the more common stoichiometric GDI engines already in the marketplace. However, particulate matter (PM) emissions from lean GDI engines, particularly during stratified combustion modes, are problematic for lean GDI technology to meet U.S. Environmental Protection Agency Tier 3 and other future emission regulations. As such, the control of lean GDI PM with wall-flow filters, referred to as gasoline particulate filter (GPF) technology, is of interest. Since lean GDI PM chemistry and morphology differ from diesel PM (where more filtration experience exists), the functionality of GPFs needs to be studied to determine the operating conditions suitable for efficient PM removal.
Technical Paper

Graphitic Foam Thermal Management Materials for Electronic Packaging

2000-04-02
2000-01-1576
The goal of this program is to utilize the recently developed high conductivity carbon foam for thermal management in electronics (heat exchangers and heat sinks). The technique used to fabricate the foam produces mesophase pitch-based graphitic foam with extremely high thermal conductivity and an open-celled structure. The thermal properties of the foam have been increased by 79% from 106 to 187 W/m·K at a density of 0.56 g/cm3 through process optimization. It has been demonstrated that when the high-thermal-conductivity graphitic foam is utilized as the core material for the heat exchanger, the effective heat transfer can be increased by at least an order of magnitude compared to traditional designs. A once-through-foam core/aluminum-plated heat exchanger has been fabricated for testing in electronic modules for power inverters.
Technical Paper

Heavy Vehicle Propulsion Materials: Recent Progress and Future Plans

2001-05-14
2001-01-2061
The Heavy Vehicle Propulsion Materials Program provides enabling materials technology for the U.S. DOE Office of Heavy Vehicle Technologies (OHVT). The technical agenda for the program is based on an industry assessment and the technology roadmap for the OHVT. A five-year program plan was published in 2000. Major efforts in the program are materials for diesel engine fuel systems, exhaust aftertreatment, and air handling. Additional efforts include diesel engine valve-train materials, structural components, and thermal management. Advanced materials, including high-temperature metal alloys, intermetallics, cermets, ceramics, amorphous materials, metal- and ceramic-matrix composites, and coatings, are investigated for critical engine applications. Selected technical issues and planned and ongoing projects as well as brief summaries of several technical highlights are given.
X