Refine Your Search

Topic

Author

Search Results

Technical Paper

A Comparison of HCCI Ignition Characteristics of Gasoline Fuels Using a Single-Zone Kinetic Model with a Five Component Surrogate Fuel

2008-10-06
2008-01-2399
While gasoline surrogate development has progressed in the areas of more complex surrogate mixtures and in kinetic modeling tools and mechanism development, it is generally recognized that further development is still needed. This paper represents a small step in supporting this development by providing comparisons between experimental engine data and surrogate-based kinetic models. In our case, the HCCI engine data comes from a port-injected, single-cylinder research engine with intake-air heating for combustion phasing control. Timing sweeps were run at constant fuel rate for three market gasolines and five surrogate mixtures. Modeling was done using the CHEMKIN software with a gasoline mechanism set containing 1440 species and 6572 reactions. Five pure compounds were selected for the surrogate blends and include iso-octane, n-heptane, toluene, methylcyclohexane, and 1-hexene.
Technical Paper

A Soft-Switched DC/DC Converter for Fuel Cell Vehicle Applications*

2002-06-03
2002-01-1903
Fuel cell-powered electric vehicles (FCPEV) require an energy storage device to start up the fuel cells and to store the energy captured during regenerative braking. Low-voltage (12 V) batteries are preferred as the storage device to maintain compatibility with the majority of today's automobile loads. A dc/dc converter is therefore needed to interface the low-voltage batteries with the fuel cell-powered higher-voltage dc bus system (255 V ∼ 425 V), transferring energy in either direction as required. This paper presents a soft-switched, isolated bi-directional dc/dc converter developed at Oak Ridge National Laboratory for FCPEV applications. The converter employs dual half-bridges interconnected with an isolation transformer to minimize the number of switching devices and their associated gate drive requirements. Snubber capacitors including the parasitic capacitance of the switching devices and the transformer leakage inductance are utilized to achieve zero-voltage switching (ZVS).
Technical Paper

A Systems Approach to Life Cycle Truck Cost Estimation

2006-10-31
2006-01-3562
A systems-level modeling framework developed to estimate the life cycle cost of medium- and heavy-duty trucks is discussed in this paper. Costs are estimated at a resolution of five major subsystems and 30+ subsystems, each representing a specific manufacturing technology. Interrelationships among various subsystems affecting cost are accounted for. Results of a specific Class 8 truck are finally discussed to demonstrate the modeling framework's capability, including the analysis of cost-effectiveness of some of the competing alternative system design options being considered by the industry today.
Technical Paper

A Thermal Conductivity Approach for Measuring Hydrogen in Engine Exhaust

2004-10-25
2004-01-2908
Thermal conductivity detection has long been used in gas chromatography to detect hydrogen and other diatomic gases in a gas sample. Thermal conductivity instruments that are not coupled to gas chromatographs are useful for detecting hydrogen in binary gas mixtures, but suffer from significant cross-interference from other gas species that are separated when the detector is used with a gas chromatograph. This study reports a method for using a commercially-available thermal conductivity instrument to detect and quantify hydrogen in a diesel exhaust stream. The instrument time response of approximately 40 seconds is sufficient for steady-state applications. Cross-interference from relevant gas species are quantified and discussed. Measurement uncertainty associated with the corrections for the various species is estimated and practical implications for use of the instrument and method are discussed.
Technical Paper

Achieving Diesel-Like Efficiency in a High Stroke-to-Bore Ratio DISI Engine under Stoichiometric Operation

2020-04-14
2020-01-0293
This work explores pathways to achieve diesel-like, high-efficiency combustion with stoichiometric 3-way catalyst compatible spark ignition (SI). A high stroke-to-bore engine design (1.5:1) with cooled exhaust gas recirculation (EGR) and high compression ratio (rc) was used to improve engine efficiency by up to 30% compared with a production turbocharged gasoline direct injection spark ignition engine. To achieve efficiency improvements, engine experiments were coupled with computational fluid dynamics simulations to guide and explain experimental trends between the original engine and the high stroke-to-bore ratio design (1.5:1). The effects of EGR and late intake valve closing (IVC) and fuel characteristics are investigated through their effects on knock mitigation. Direct injection of 91 RON E10 gasoline, 99 RON E0 gasoline, and liquified petroleum gas (i.e., propane/autogas) were evaluated with geometric rc ranging from 13.3:1 to 16.8:1.
Technical Paper

Advanced Finite-Volume Numerics and Source Term Assumptions for Kernel and G-Equation Modelling of Propane/Air Flames

2022-03-29
2022-01-0406
G-Equation models represent propagating flame fronts with an implicit two-dimensional surface representation (level-set). Level-set methods are fast, as transport source terms for the implicit surface can be solved with finite-volume operators on the finite-volume domain, without having to build the actual surface. However, they include approximations whose practical effects are not properly understood. In this study, we improved the numerics of the FRESCO CFD code’s G-Equation solver and developed a new method to simulate kernel growth using signed distance functions and the analytical sphere-mesh overlap. We analyzed their role for simulating propane/air flames, using three well-established constant-volume configurations: a one-dimensional, freely propagating laminar flame; a disc-shaped, constant-volume swirl combustor; and torch-jet flame development through an orifice from a two-chamber device.
Technical Paper

Advanced Materials Characterization at the High Temperature Materials Laboratory

1999-04-28
1999-01-2256
The HTML (High Temperature Materials Laboratory) is a U.S. Department of Energy User Facility, offering opportunities for in-depth characterization of advanced materials, specializing in high-temperature-capable structural ceramics. Available are electron microscopy for micro-structural and microchemical analysis, equipment for measurement of the thermophysical and mechanical properties of ceramics to elevated temperatures, X-ray and neutron diffraction for structure and residual stress analysis, and high speed grinding machines with capability for measurement of component shape, tolerances, surface finish, and friction and wear properties. This presentation will focus on structural materials characterization, illustrated with examples of work performed on heat engine materials such as silicon nitride, industrial refractories, metal-and ceramic-matrix composites, and structural alloys.
Journal Article

Analytical Examination of the Relationship between Fuel Properties, Engine Efficiency, and R Factor Values

2019-04-02
2019-01-0309
The variability in gasoline energy content, though most frequently not a consumer concern, is an issue of concern for vehicle manufacturers in demonstrating compliance with regulatory requirements. Advancements in both vehicle technology, test methodology, and fuel formulations have increased the level of visibility and concern with regard to the energy content of fuels used for regulatory testing. The R factor was introduced into fuel economy calculations for vehicle certification in the late 1980s as a means of addressing batch-to-batch variations in the heating value of certification fuels and the resulting variations in fuel economy results. Although previous studies have investigated values of the R factor for modern vehicles through experimentation, subsequent engine studies have made clear that it is difficult to distinguish between the confounding factors that influence engine efficiency when R is being studied experimentally.
Technical Paper

Application of High Performance Computing for Simulating Cycle-to-Cycle Variation in Dual-Fuel Combustion Engines

2016-04-05
2016-01-0798
Interest in operational cost reduction is driving engine manufacturers to consider low-cost fuel substitution in heavy-duty diesel engines. These dual-fuel (DF) engines could be operated either in diesel-only mode or operated with premixed natural gas (NG) ignited by a pilot flame of compression-ignited direct-injected diesel fuel. Under certain conditions, dual-fuel operation can result in increased cycle-to-cycle variability (CCV) during combustion. CFD can greatly help in understanding and identifying critical parameters influencing CCV. Innovative modelling techniques and large computing resources are needed to investigate the factors affecting CCV in dual-fuel engines. This paper discusses the use of the High Performance Computing resource Titan, at Oak Ridge National Laboratory, to investigate CCV of a dual-fuel engine.
Journal Article

Application of a Tractive Energy Analysis to Quantify the Benefits of Advanced Efficiency Technologies for Medium- and Heavy-Duty Trucks Using Characteristic Drive Cycle Data

2012-04-16
2012-01-0361
Accurately predicting the fuel savings that can be achieved with the implementation of various technologies developed for fuel efficiency can be very challenging, particularly when considering combinations of technologies. Differences in the usage of highway vehicles can strongly influence the benefits realized with any given technology, which makes generalizations about fuel savings inappropriate for different vehicle applications. A model has been developed to estimate the potential for reducing fuel consumption when advanced efficiency technologies, or combinations of these technologies, are employed on highway vehicles, particularly medium- and heavy-duty trucks. The approach is based on a tractive energy analysis applied to drive cycles representative of the vehicle usage, and the analysis specifically accounts for individual energy loss factors that characterize the technologies of interest.
Technical Paper

Assessing Resilience in Lane Detection Methods: Infrastructure-Based Sensors and Traditional Approaches for Autonomous Vehicles

2024-04-09
2024-01-2039
Traditional autonomous vehicle perception subsystems that use onboard sensors have the drawbacks of high computational load and data duplication. Infrastructure-based sensors, which can provide high quality information without the computational burden and data duplication, are an alternative to traditional autonomous vehicle perception subsystems. However, these technologies are still in the early stages of development and have not been extensively evaluated for lane detection system performance. Therefore, there is a lack of quantitative data on their performance relative to traditional perception methods, especially during hazardous scenarios, such as lane line occlusion, sensor failure, and environmental obstructions.
Technical Paper

Axial NO2 Utilization Measurements within a Partial Flow Filter during Passive Regeneration

2017-03-28
2017-01-0988
Measuring axial exhaust species concentration distributions within a wall-flow aftertreatment device provides unique and significant insights regarding the performance of complex devices like the SCR-on-filter. In this particular study, a less complex aftertreatment configuration which includes a DOC followed by two uncoated partial flow filters (PFF) was used to demonstrate the potential and challenges. The PFF design in this study was a particulate filter with alternating open and plugged channels. A SpaciMS [1] instrument was used to measure the axial NO2 profiles within adjacent open and plugged channels of each filter element during an extended passive regeneration event using a full-scale engine and catalyst system. By estimating the mass flow through the open and plugged channels, the axial soot load profile history could be assessed.
Technical Paper

Big Area Additive Manufacturing and Hardware-in-the-Loop for Rapid Vehicle Powertrain Prototyping: A Case Study on the Development of a 3-D-Printed Shelby Cobra

2016-04-05
2016-01-0328
Rapid vehicle powertrain development has become a technological breakthrough for the design and implementation of vehicles that meet and exceed the fuel efficiency, cost, and performance targets expected by today’s consumer. Recently, advances in large scale additive manufacturing have provided the means to bridge hardware-in-the-loop with preproduction mule chassis testing. This paper details a case study from Oak Ridge National Laboratory bridging the powertrain-in-the-loop development process with vehicle systems implementation using big area additive manufacturing (BAAM). For this case study, the use of a component-in-the-loop laboratory with math-based models is detailed for the design of a battery electric powertrain to be implemented in a printed prototype mule. The ability for BAAM to accelerate the mule development process via the concept of computer-aided design to part is explored.
Technical Paper

Choice of Tuning Parameters on 3D IC Engine Simulations Using G-Equation

2018-04-03
2018-01-0183
3D CFD spark-ignition IC engine simulations are extremely complex for the regular user. Truly-predictive CFD simulations for the turbulent flame combustion that solve fully coupled transport/chemistry equations may require large computational capabilities unavailable to regular CFD users. A solution is to use a simpler phenomenological model such as the G-equation that decouples transport/chemistry result. Such simulation can still provide acceptable and faster results at the expense of predictive capabilities. While the G-equation is well understood within the experienced modeling community, the goal of this paper is to document some of them for a novice or less experienced CFD user who may not be aware that phenomenological models of turbulent flame combustion usually require heavy tuning and calibration from the user to mimic experimental observations.
Journal Article

Combustion Studies with FACE Diesel Fuels: A Literature Review

2012-09-10
2012-01-1688
The CRC Fuels for Advanced Combustion Engines (FACE) Working Group has provided a matrix of experimental diesel fuels for use in studies on the effects of three parameters, Cetane number (CN), aromatics content, and 90 vol% distillation temperature (T90), on combustion and emissions characteristics of advanced combustion strategies. Various types of fuel analyses and engine experiments were performed in well-known research institutes. This paper reviews a collection of research findings obtained with these nine fuels. An extensive collection of analyses were performed by members of the FACE working group on the FACE diesel fuels as a means of aiding in understanding the linkage between fuel properties and combustion and emissions performance. These analyses included non-traditional chemical techniques as well as established ASTM tests. In a few cases, both ASTM tests and advanced analyses agreed that some design variables differed from their target values when the fuels were produced.
Technical Paper

Combustion and Emissions Modeling of a Gasoline HCCI Engine Using Model Fuels

2009-04-20
2009-01-0669
To address the growing need for accurate predictions of combustion phasing and emissions for development of advanced engines, a more accurate definition of model fuels and their associated chemical-kinetics mechanisms are necessary. Wide variations in street fuels require a model-fuel blending methodology to allow simulation of fuel-specific characteristics, such as ignition timing, emissions, and fuel vaporization. We present a surrogate-blending technique that serves as a practical modeling tool for determination of surrogate blends specifically tailored to different real-fuel characteristics, with particular focus on model fuels for gasoline engine simulation. We start from a palette of potential model-fuel components that are based on the characteristic chemical classes present in real fuels. From this palette, components are combined into a surrogate-fuel blend to represent a real fuel with specific fuel properties.
Technical Paper

Comparison of Simulated and Experimental Combustion of Biodiesel Blends in a Single Cylinder Diesel HCCI Engine

2007-10-29
2007-01-4010
The effect of biodiesel content on homogeneous charge compression ignition (HCCI) engine performance has been investigated both experimentally and by computer simulation. Combustion experiments were performed in a single cylinder HCCI engine using blends of soy biodiesel in ultra low sulfur diesel, with concentrations ranging from 0 to 50 vol% and equivalence ratios (Φ) from 0.38 to 0.48. Data from the engine tests included combustion analysis and exhaust composition analysis with standard gaseous emissions equipment. The engine utilized a custom port fuel injection strategy to provide highly premixed charges of fuel and air, making it possible to compare the results with single zone chemical kinetics simulations that were performed using CHEMKIN III, with a reaction set including 670 species and over 3000 reactions.
Technical Paper

Cycle to Cycle Variation Study in a Dual Fuel Operated Engine

2017-03-28
2017-01-0772
The standard capability of engine experimental studies is that ensemble averaged quantities like in-cylinder pressure from multiple cycles and emissions are reported and the cycle to cycle variation (CCV) of indicated mean effective pressure (IMEP) is captured from many consecutive combustion cycles for each test condition. However, obtaining 3D spatial distribution of all the relevant quantities such as fuel-air mixing, temperature, turbulence levels and emissions from such experiments is a challenging task. Computational Fluid Dynamics (CFD) simulations of engine flow and combustion can be used effectively to visualize such 3D spatial distributions. A dual fuel engine is considered in the current study, with manifold injected natural gas (NG) and direct injected diesel pilot for ignition.
Technical Paper

DOE Plant-Wide Energy Assessment Results Related to the U.S. Automotive Industry

2006-04-03
2006-01-0594
Forty-nine plant-wide energy efficiency assessments have been undertaken under sponsorship of the U.S. Department of Energy's Industrial Technologies Program. Plant-wide assessments are comprehensive, systematic investigations of plant energy efficiency, including plant utility systems and process operations. Assessments in industrial facilities have highlighted opportunities for implementing best practices in industrial energy management, including the adoption of new, energy-efficient technologies and process and equipment improvements. Total annual savings opportunities of $201 million have been identified from the 40 completed assessments. Many of the participating industrial plants have implemented efficiency-improvement projects and already have realized total cost savings of more than $81 million annually. This paper provides an overview of the assessment efforts undertaken and presents a summary of the major energy and cost savings identified to date.
Journal Article

Deep Learning-Based Queue-Aware Eco-Approach and Departure System for Plug-In Hybrid Electric Buses at Signalized Intersections: A Simulation Study

2020-04-14
2020-01-0584
Eco-Approach and Departure (EAD) has been considered as a promising eco-driving strategy for vehicles traveling in an urban environment, where information such as signal phase and timing (SPaT) and geometric intersection description is well utilized to guide vehicles passing through intersections in the most energy-efficient manner. Previous studies formulated the optimal trajectory planning problem as finding the shortest path on a graphical model. While this method is effective in terms of energy saving, its computation efficiency can be further enhanced by adopting machine learning techniques. In this paper, we propose an innovative deep learning-based queue-aware eco-approach and departure (DLQ-EAD) system for a plug-in hybrid electric bus (PHEB), which is able to provide an online optimal trajectory for the vehicle considering both the downstream traffic condition (i.e. traffic lights, queues) and the vehicle powertrain efficiency.
X