Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

A Computational Study on Laminar Flame Propagation in Mixtures with Non-Zero Reaction Progress

2019-04-02
2019-01-0946
Flame speed data reported in most literature are acquired in conventional apparatus such as the spherical combustion bomb and counterflow burner, and are limited to atmospheric pressure and ambient or slightly elevated unburnt temperatures. As such, these data bear little relevance to internal combustion engines and gas turbines, which operate under typical pressures of 10-50 bar and unburnt temperature up to 900K or higher. These elevated temperatures and pressures not only modify dominant flame chemistry, but more importantly, they inevitably facilitate pre-ignition reactions and hence can change the upstream thermodynamic and chemical conditions of a regular hot flame leading to modified flame properties. This study focuses on how auto-ignition chemistry affects flame propagation, especially in the negative-temperature coefficient (NTC) regime, where dimethyl ether (DME), n-heptane and iso-octane are chosen for study as typical fuels exhibiting low temperature chemistry (LTC).
Technical Paper

A Computational Study on the Critical Ignition Energy and Chemical Kinetic Feature for Li-Ion Battery Thermal Runaway

2018-04-03
2018-01-0437
Lithium-ion (Li-ion) batteries and issues related to their thermal management and safety have been attracting extensive research interests. In this work, based on a recent thermal chemistry model, the phenomena of thermal runaway induced by a transient internal heat source are computationally investigated using a three-dimensional (3D) model built in COMSOL Multiphysics 5.3. Incorporating the anisotropic heat conductivity and typical thermal chemical parameters available from literature, temperature evolution subject to both heat transfer from an internal source and the activated internal chemical reactions is simulated in detail. This paper focuses on the critical runaway behavior with a delay time around 10s. Parametric studies are conducted to identify the effects of the heat source intensity, duration, geometry, as well as their critical values required to trigger thermal runaway.
Technical Paper

A Decision Analytic Approach to Incorporating Value of Information in Autonomous Systems

2018-04-03
2018-01-0799
Selecting the right transportation platform is challenging, whether it is at a personal level or at an organizational level. In settings where predominantly the functional aspects rule the decision making process, defining the mobility of a vehicle is critical for comparing different offerings and making acquisition decisions. With the advent of intelligent vehicles, exhibiting partial to full autonomy, this challenge is exacerbated. The same vehicle may traverse independently and with greater tolerance for acceleration than human occupied vehicles, while, at the same time struggle with obstacle avoidance. The problem presents itself at the individual vehicle sensing level and also at the vehicle/fleet level. At the sensing and information level, one can be looking at issues of latency, bandwidth and optimal information fusion from multiple sources including privileged sensing. At the overall vehicle level, one focuses more on the ability to complete missions.
Journal Article

A Decision Based Mobility Model for Semi and Fully Autonomous Vehicles

2020-04-14
2020-01-0747
With the emergence of intelligent ground vehicles, an objective evaluation of vehicle mobility has become an even more challenging task. Vehicle mobility refers to the ability of a ground vehicle to traverse from one point to another, preferably in an optimal way. Numerous techniques exist for evaluating the mobility of vehicles on paved roads, both quantitatively and qualitatively, however, capabilities to evaluate their off-road performance remains limited. Whereas a vehicle’s off-road mobility may be significantly enhanced with intelligence, it also introduces many new variables into the decision making process that must be considered. In this paper, we present a decision analytic framework to accomplish this task. In our approach, a vehicle’s mobility is modeled using an operator’s preferences over multiple mobility attributes of concern. We also provide a method to analyze various operating scenarios including the ability to mitigate uncertainty in the vehicles inputs.
Technical Paper

A FEM Model to Predict Pressure Loading Cycle for Hydroforming Processes

1999-03-01
1999-01-0677
Tubular hydroforming is a novel process that has recently gained much attention due to its cost-effective application in the automotive industry. Hydroformed automotive parts have high strength to weight ratio and have good repeatability with high dimensional accuracy. At this time, there is little experience in modeling the hydroforming process to better understand its application and researchers have tried using stamping simulation software to analyze the process. Unlike conventional sheet stamping which is a displacement driven process, tubular hydroforming is a force driven process and its success is governed by the nature of internal pressurization. Hence, a new three-dimensional finite element model using a computationally efficient 6-noded shell element has been developed. A simple pressure prediction model has been developed and integrated into the formulation for effective control of the process.
Technical Paper

A Mesoscopic-Stress Based Fatigue Limit Theory - A Revised Dang Van's Model

2014-04-01
2014-01-0902
Dang Van (Dang Van et al., 1982 and Dang Van, 1993) states that for an infinite lifetime (near fatigue limit), crack nucleation in slip bands may occur at the most unfavorable oriented grains, which are subject to plastic deformation even if the macroscopic stress is elastic. Since the residual stresses in these plastically deformed grains are induced by the restraining effect of the adjacent grains, it is assumed that the residual stresses are stabilized at a mesoscopic level. These stresses are currently approximated by the macroscopic hydrostatic stress defined by the normal stresses to the faces of an octahedral element oriented with the faces symmetric to the principal axis; mathematically they are equal to each other and they are the average of the principal stresses.
Technical Paper

A New Measurement of Aluminum Alloy Edge Stretching Limit Based on Digital Image Correlation Method

2016-04-05
2016-01-0417
In Aluminum Alloy, AA, sheet metal forming, the through thickness cracking at the edge of cut out is one of the major fracture modes. In order to prevent the edge cracking in production forming process, practical edge stretch limit criteria are needed for virtual forming prediction and early stamping trial evaluations. This paper proposes new methods for determining the edge stretching limit of the sheet coupons, with and without pre-stretching, based on the Digital Image Correlation (DIC) technique. A numbers of sets of notch-shaped smaller coupons with three different pre-stretching conditions (near 5%, 10% and fractured) are cut from the prestretched large specimens. Then the notch-shaped smaller coupons are stretched by uniaxial tension up to through edge cracking observed. A dual-camera 3D-DIC system is utilized to measure both coupon face strain and thickness strain in the notch area at the same time.
Technical Paper

Active Collision Avoidance System for E-Scooters in Pedestrian Environment

2024-04-09
2024-01-2555
In the dense fabric of urban areas, electric scooters have rapidly become a preferred mode of transportation. As they cater to modern mobility demands, they present significant safety challenges, especially when interacting with pedestrians. In general, e-scooters are suggested to be ridden in bike lanes/sidewalks or share the road with cars at the maximum speed of about 15-20 mph, which is more flexible and much faster than pedestrians and bicyclists. Accurate prediction of pedestrian movement, coupled with assistant motion control of scooters, is essential in minimizing collision risks and seamlessly integrating scooters in areas dense with pedestrians. Addressing these safety concerns, our research introduces a novel e-Scooter collision avoidance system (eCAS) with a method for predicting pedestrian trajectories, employing an advanced Long short-term memory (LSTM) network integrated with a state refinement module.
Journal Article

Aerodynamic Shape Optimization of an SUV in early Development Stage using a Response Surface Method

2014-09-30
2014-01-2445
In the development of an FAW SUV, one of the goals is to achieve a state of the art drag level. In order to achieve such an aggressive target, feedback from aerodynamics has to be included in the early stage of the design decision process. The aerodynamic performance evaluation and improvement is mostly based on CFD simulation in combination with some wind tunnel testing for verification of the simulation results. As a first step in this process, a fully detailed simulation model is built. The styling surface is combined with engine room and underbody detailed geometry from a similar size existing vehicle. From a detailed analysis of the flow field potential areas for improvement are identified and five design parameters for modifying overall shape features of the upper body are derived. In a second step, a response surface method involving design of experiments and adaptive sampling techniques are applied for characterizing the effects of the design changes.
Technical Paper

Aluminum Sheet Springback (Side-Wall-Curl) Study

2017-03-28
2017-01-0396
Vehicle weight reduction is a significant challenge for the modern automotive industry. In recent years, the amount of vehicular components constructed from aluminum alloy has increased due to its light weighting capabilities. Automotive manufacturing processes, predominantly those utilizing various stamping applications, require a thorough understanding of aluminum fracture predictions methods, in order to accurately simulate the process using Finite Element Method (FEM) software or use it in automotive engineering manufacture. This paper presents the strain distribution of A5182 aluminum samples after punch impact under various conditions by Digital Image Correlation (DIC) system, its software also measured the complete strain history, in addition to sample curvature after it was impacted; therefore obtaining the data required to determine the amount of side-wall-curl (Aluminum sheet springback) present after formation.
Technical Paper

Amplitude Method for Detecting Debonding in Stack Bond Adhesive

2024-03-13
2024-01-5033
Adhesively bonded joints have been applied in the automotive industry for the past few decades due to their advantages such as higher fatigue resistance, light weight, capability of joining dissimilar materials, good energy absorption, and high torsional stiffness for overall body structure. They also provide an effective seal against noise and vibration at a low cost. There exists the challenge of defining the fatigue characteristics of adhesive joints under cyclic loading conditions, and conventional methods have limitations in detecting the crack initiation of a bonded joint. This study introduces a method of detecting crack initiation by using the frequency method. It is found that stiffness change in the system is highly correlated to change in natural frequencies. By monitoring the change in natural frequencies, the crack initiation can be detected.
Technical Paper

An Application of Ant Colony Optimization to Energy Efficient Routing for Electric Vehicles

2013-04-08
2013-01-0337
With the increased market share of electric vehicles, the demand for energy-efficient routing algorithms specifically optimized for electric vehicles has increased. Traditional routing algorithms are focused on optimizing the shortest distance or the shortest time in finding a path from point A to point B. These traditional methods have been working well for fossil fueled vehicles. Electric vehicles, on the other hand, require different route optimization techniques. Negative edge costs, battery power limits, battery capacity limits, and vehicle parameters that are only available at query time, make the task of electric vehicle routing a challenging problem. In this paper, we present an ant colony based, energy-efficient routing algorithm that is optimized and designed for electric vehicles. Simulation results show improvements in the energy consumption of electric vehicles when applied to a start-to-destination routing problem.
Technical Paper

An Application of Variation Simulation - Predicting Interior Driveline Vibration Based on Production Variation of Imbalance and Runout

2011-05-17
2011-01-1543
An application of variation simulation for predicting vehicle interior driveline vibration is presented. The model, based on a “Monte Carlo”-style approach, predicts the noise, vibration and harshness (NVH) response of the vehicle driveline based on distributions of imbalance and runout derived from manufacturing production variation (the forcing function) and the vehicle's sensitivity to the forcing function. The model is used to illustrate the change in vehicle interior vibration that results when changes are made to production variation for runout and imbalance of driveline components, and how those same changes result in different responses based on vehicle sensitivity.
Journal Article

An Experimental Survey of Li-Ion Battery Charging Methods

2016-05-01
2015-01-9145
Lithium-Ion batteries are the standard portable power solution to many consumers and industrial applications. These batteries are commonly used in laptop computers, heavy duty devices, unmanned vehicles, electric and hybrid vehicles, cell phones, and many other applications. Charging these batteries is a delicate process because it depends on numerous factors such as temperature, cell capacity, and, most importantly, the power and energy limits of the battery cells. Charging capacity, charging time and battery pack temperature variations are highly dependent on the charging method used. These three factors can be of special importance in applications with strict charging time requirements or with limited thermal management capabilities. In this paper, three common charging methods are experimentally studied and analyzed. Constant-current constant-voltage, the time pulsed charging method, and the multistage constant current charging methods were considered.
Journal Article

An RBDO Method for Multiple Failure Region Problems using Probabilistic Reanalysis and Approximate Metamodels

2009-04-20
2009-01-0204
A Reliability-Based Design Optimization (RBDO) method for multiple failure regions is presented. The method uses a Probabilistic Re-Analysis (PRRA) approach in conjunction with an approximate global metamodel with local refinements. The latter serves as an indicator to determine the failure and safe regions. PRRA calculates very efficiently the system reliability of a design by performing a single Monte Carlo (MC) simulation. Although PRRA is based on MC simulation, it calculates “smooth” sensitivity derivatives, allowing therefore, the use of a gradient-based optimizer. An “accurate-on-demand” metamodel is used in the PRRA that allows us to handle problems with multiple disjoint failure regions and potentially multiple most-probable points (MPP). The multiple failure regions are identified by using a clustering technique. A maximin “space-filling” sampling technique is used to construct the metamodel. A vibration absorber example highlights the potential of the proposed method.
Technical Paper

Analysis of Sheet Metal Joining with Self-Piercing Riveting

2020-04-14
2020-01-0223
Self-piercing riveting (SPR) has been used in production to join sheet materials since the early 1990s. A large amount of experimental trial work was required in order to determine an appropriate combination of rivet and anvil design to fulfill the required joint parameters. The presented study is describing the methodology of SPR joint design based on numerical simulation and experimental methods of defining required simulation input parameters. The required inputs are the stress-strain curves of sheet materials and rivets for the range of strains taking place in the SPR joining process, parameters required for a fracture model for all involved materials, and friction parameters for all interfaces of SPR process. In the current study, the normalized Cockroft-Latham fracture criterion was used for predicting fracture. Custom hole and tube expansion tests were used for predicting fracture of the riveted materials and the rivet, respectively.
Journal Article

Analysis of Tool Wear for Trimming of DP980 Sheet Metal Blanks

2017-03-28
2017-01-0302
In recent years, implementation of dual phase (DP) Advanced High Strength Steels (AHSS) and Ultra High Strength Steels (UHSS) is increasing in automotive components due to their superior structural performance and vehicle weight reduction capabilities. However, these materials are often sensitive to trimmed edge cracking if stretching along sheared edge occurs in such processes as stretch flanging. Tool wear is another major issue in the trimming of UHSS because of higher contact pressures at the interface between cutting tools and sheet metal blank caused by UHSS’s higher flow stresses and the presence of a hard martensitic in the microstructure. The objective of the present paper is to discuss the methodology of analyzing die wear for trimming operations of UHSS components and illustrate it with some examples of tool wear analysis for trimming 1.5mm thick DP980 steel.
Technical Paper

Analyzing the Impact of Electric Vehicles on Power Losses and Voltage Profile in Power Distribution Systems

2022-03-29
2022-01-0748
As the number of electric vehicles (EVs) within society rapidly increase, the concept of maximizing its efficiency within the electric smart grid becomes crucial. This research presents the impacts of integrating EV charging infrastructures within a smart grid through a vehicle to grid (V2G) program. It also observes the circulation of electric charge within the system so that the electric grid does not become exhausted during peak hours. This paper will cover several different case studies and will analyze the best and worst scenarios for the power losses and voltage profiles in the power distribution system. Specifically, we seek to find the optimal location as well as the ideal number of EVs in the distribution system while minimizing its power losses and optimizing its voltage profile. Verification of the results are primarily conducted using GUIs created on MATLAB.
Technical Paper

Approximating Convective Boundary Conditions for Transient Thermal Simulations with Surrogate Models for Thermal Packaging Studies

2019-04-02
2019-01-0904
The need for transient thermal simulations in vehicle packaging studies has grown rapidly in recent years. To date, the computational costs associated with the transient simulation of 3D conjugate heat transfer phenomena has prohibited the widespread use of full vehicle transient simulations. This paper presents results from a recent study that explored a method to circumvent the computational costs associated with long transient conjugate heat transfer simulations. The proposed method first segregates the thermal structural and fluid physics domains to take advantage of time scale differences. The two domains are then re-coupled to calculate a series of steady state conjugate heat transfer simulations at various vehicle speeds. The local convection terms are then used to construct a set of surrogate models dependent on vehicle speed, that predict the local heat transfer coefficients and the local near wall fluid temperatures.
Journal Article

Balancing Lifecycle Sustainment Cost with Value of Information during Design Phase

2020-04-14
2020-01-0176
The complete lifecycle of complex systems, such as ground vehicles, consists of multiple phases including design, manufacturing, operation and sustainment (O&S) and finally disposal. For many systems, the majority of the lifecycle costs are incurred during the operation and sustainment phase, specifically in the form of uncertain maintenance costs. Testing and analysis during the design phase, including reliability and supportability analysis, can have a major influence on costs during the O&S phase. However, the cost of the analysis itself must be reconciled with the expected benefits of the reduction in uncertainty. In this paper, we quantify the value of performing the tests and analyses in the design phase by treating it as imperfect information obtained to better estimate uncertain maintenance costs.
X