Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Application of Casting to Automotive ECU’s

2021-04-06
2021-01-0131
Casting is the ability to let users transfer their favorite videos, music, movies, etc. from their phone to a chosen display. This functionality has become very popular these days, and to the user, it is as simple as clicking a button. This “simple” task is a complex system that requires various independent sources to communicate efficiently and effectively to produce a robust and reliable output. The sending and receiving devices are required to be on the same network - which involves reliable and secure connection. This allows the sending of the URL of the chosen feature to the server provider, which will then connect to the receiver embedded electronics where the authentication process that protects Digital Rights Management (DRM) is established. In the era of developing autonomous and luxury vehicles, this technology has the potential to add a new dimension of in-vehicle entertainment that could come very close to the home experience.
Journal Article

Development of a Fork-Join Dynamic Scheduling Middle-Layer for Automotive Powertrain Control Software

2017-03-28
2017-01-1620
Multicore microcontrollers are rapidly making their way into the automotive industry. We have adopted the Cilk approach (MIT 1994) to develop a pure ANSI C Fork-Join dynamic scheduling runtime middle-layer with a work-stealing scheduler targeted for automotive multicore embedded systems. This middle-layer could be running on top of any AUTOSAR compliant multicore RTOS. We recently have successfully integrated our runtime layer into parts of legacy Ford powertrain software at Ford Motor Company. We have used the 3-core AURIX multicore chip from Infineon and the multicore RTA-OS. For testing purposes, we have forked some parallelizable functions inside two periodic tasks in Ford legacy powertrain software to be dynamically scheduled and executed on the available cores. Our preliminary evaluation showed 1.3–1.4x speedups for these two forked tasks.
Technical Paper

Low Profile PIFA Antenna for Vehicular 5G and DSRC Communication Systems

2021-04-06
2021-01-0150
A low profile wideband Planar Inverted-F antenna (PIFA) is presented in this paper for automotive application in the sub-6 GHz 5G system and Dedicated Short Range Communication (DSRC) bands that operates in the frequency range from 617 MHz to 6 GHz while having an acceptable rejection in the GNSS bands. The proposed antenna is suitable for low profile applications in the automotive industry due to its physical dimensions and performance. Simulation results are presented along with measured data on a ground plane (GND) and on a vehicle from properly cut metal sheet prototype. The results are discussed in terms of return loss, radiation patterns, and efficiency.
X