Refine Your Search

Topic

Author

Search Results

Technical Paper

A 1-D Platform to Simulate the Effects of Dedicated EGR on SI Engine Combustion

2017-03-28
2017-01-0524
The thermal efficiency of spark-ignition engines can be enhanced by increasing the rate of exhaust gas recirculation (EGR) such that the low temperature combustion regime could be achieved. However, there is an upper limit on the amount of EGR rate, beyond which flame speed becomes slow and unstable, and local quenching starts to hurt the combustion stability, efficiency, and emission. To resolve this issue, the concept of dedicated EGR has been proposed previously to be an effective way to enhance flame propagation under lean burn condition with even higher levels of EGR with reformate hydrogen and carbon monoxide. In this study, the effects of thermochemical fuel reforming on the reformate composition under rich conditions (1.0 < ϕ < 2.0) have been studied using detailed chemistry for iso-octane, as the representative component for gasoline.
Technical Paper

A Comprehensive Method for Piston Secondary Dynamics and Piston-Bore Contact

2007-04-16
2007-01-1249
Low vibration and noise level in internal combustion engines has become an essential part of the design process. It is well known that the piston assembly can be a major source of engine mechanical friction and cold start noise, if not designed properly. The piston secondary motion and piston-bore contact pattern are critical in piston design because they affect the skirt-to-bore impact force and therefore, how the piston impact excitation energy is damped, transmitted and eventually radiated from the engine structure as noise. An analytical method is presented in this paper for simulating piston secondary dynamics and piston-bore contact for an asymmetric half piston model. The method includes several important physical attributes such as bore distortion effects due to mechanical and thermal deformation, inertia loading, piston barrelity and ovality, piston flexibility and skirt-to-bore clearance. The method accounts for piston kinematics, rigid-body dynamics and flexibility.
Technical Paper

A Computational Study on Laminar Flame Propagation in Mixtures with Non-Zero Reaction Progress

2019-04-02
2019-01-0946
Flame speed data reported in most literature are acquired in conventional apparatus such as the spherical combustion bomb and counterflow burner, and are limited to atmospheric pressure and ambient or slightly elevated unburnt temperatures. As such, these data bear little relevance to internal combustion engines and gas turbines, which operate under typical pressures of 10-50 bar and unburnt temperature up to 900K or higher. These elevated temperatures and pressures not only modify dominant flame chemistry, but more importantly, they inevitably facilitate pre-ignition reactions and hence can change the upstream thermodynamic and chemical conditions of a regular hot flame leading to modified flame properties. This study focuses on how auto-ignition chemistry affects flame propagation, especially in the negative-temperature coefficient (NTC) regime, where dimethyl ether (DME), n-heptane and iso-octane are chosen for study as typical fuels exhibiting low temperature chemistry (LTC).
Technical Paper

A Model for Crank-Angle-Resolved Engine Cylinder Pressure Estimation

2018-04-03
2018-01-1157
Real-time measurement or estimation of crank-angle-resolved engine cylinder pressure may become commonplace in the next generation of engine controllers to optimize spark, valve timing, or compression ratio. Toward the development of a real-time cylinder pressure estimator, this work presents a crank-angle-resolved engine cylinder pressure estimation model that could accept inputs such as speed, manifold pressure and throttle position, and deliver crank-angle resolved cylinder pressure in real-time, at engine speeds covering the useful operating range of most engines. The model was validated by comparing simulated cylinder pressure with thirteen sets of cylinder pressure data, from two different commercial engines from two different OEMs. Estimated pressures were compared against the actual measured pressure traces. The average relative error is about 3% while the maximum relative error is 5%. Both can be improved with further tuning.
Technical Paper

A Two-Layer Soot Model for Hydrocarbon Fuel Combustion

2020-04-14
2020-01-0243
Experimental studies of soot particles showed that the intensity ratio of amorphous and graphite layers measured by Raman spectroscopy correlates to soot oxidation reactivities, which is very important for regeneration of the diesel particulate filters and gasoline particulate filters. This physical mechanism is absent in all soot models. In the present paper, a novel two-layer soot model was proposed that considers the amorphous and graphite layers in the soot particles. The soot model considers soot inception, soot surface growth, soot oxidation by O2 and OH, and soot coagulation. It is assumed that amorphous-type soot forms from fullerene. No soot coagulation is considered in the model between the amorphous- and graphitic-types of soot. Benzene is taken as the soot precursor, which is formed from acetylene. The model was implemented into a commercial CFD software CONVERGE using user defined functions. A diesel engine case was simulated.
Technical Paper

Algorithm to Calibrate Catalytic Converter Simulation Light-Off Curve

2024-04-09
2024-01-2630
Spark ignition engines utilize catalytic converters to reform harmful exhaust gas emissions such as carbon monoxide, unburned hydrocarbons, and oxides of nitrogen into less harmful products. Aftertreatment devices require the use of expensive catalytic metals such as platinum, palladium, and rhodium. Meanwhile, tightening automotive emissions regulations globally necessitate the development of high-performance exhaust gas catalysts. So, automotive manufactures must balance maximizing catalyst performance while minimizing production costs. There are thousands of different recipes for catalytic converters, with each having a different effect on the various catalytic chemical reactions which impact the resultant tailpipe gas composition. In the development of catalytic converters, simulation models are often used to reduce the need for physical parts and testing, thus saving significant time and money.
Technical Paper

Analysis of Sheet Metal Joining with Self-Piercing Riveting

2020-04-14
2020-01-0223
Self-piercing riveting (SPR) has been used in production to join sheet materials since the early 1990s. A large amount of experimental trial work was required in order to determine an appropriate combination of rivet and anvil design to fulfill the required joint parameters. The presented study is describing the methodology of SPR joint design based on numerical simulation and experimental methods of defining required simulation input parameters. The required inputs are the stress-strain curves of sheet materials and rivets for the range of strains taking place in the SPR joining process, parameters required for a fracture model for all involved materials, and friction parameters for all interfaces of SPR process. In the current study, the normalized Cockroft-Latham fracture criterion was used for predicting fracture. Custom hole and tube expansion tests were used for predicting fracture of the riveted materials and the rivet, respectively.
Technical Paper

Balance between Reliability and Robustness in Engine Cooling System Optimal Design

2007-04-16
2007-01-0594
This paper explores the trade-off between reliability-based design and robustness for an automotive under-hood thermal system using the iSIGHT-FD environment. The interaction between the engine cooling system and the heating, ventilating, and air-conditioning (HVAC) system is described. The engine cooling system performance is modeled using Flowmaster and a metamodel is developed in iSIGHT. The actual HVAC system performance is characterized using test bench data. A design of experiment procedure determines the dominant factors and the statistics of the HVAC performance is obtained using Monte Carlo simulation (MCS). The MCS results are used to build an overall system response metamodel in order to reduce the computational effort. A multi-objective optimization in iSIGHT maximizes the system mean performance and simultaneously minimizes its standard deviation subject to probabilistic constraints.
Technical Paper

Belt Wet Friction and Noise Study

2009-06-15
2009-01-1979
Serpentine belt system has been widely used to drive automotive accessories like power steering pump, alternator, and A/C compressor from a crankshaft pulley. Overload under severe conditions can lead to excessive slippage in the belt pulley interface in poorly designed accessory systems. This can lead to undesirable noise that increases warranty cost substantially. The mechanisms and data of these tribology performance, noise features and system response are of utmost interest to the accessory drive designers. As accessories belt systems are usually used in ambient condition, the presence of water on belt is unavoidable under the raining weather conditions. The presence of water in interface induces larger slippage as the water film in interface changes the friction mechanisms in rubber belt-pulley interface from coulomb friction to friction with mixed lubrication that has negative slope of coefficient of friction (cof) - velocity.
Technical Paper

CAE Correlation of Sealing Pressure of a Press-in-Place Gasket

2021-04-06
2021-01-0299
The Press-in-Place (PIP) gasket is a static face seal with self-retaining feature, which is used for the mating surfaces of engine components to maintain the reliability of the closed system under various operating conditions. Its design allows it to provide enough contact pressure to seal the internal fluid as well as prevent mechanical failures. Insufficient sealing pressure will lead to fluid leakage, consequently resulting in engine failures. A test fixture was designed to simulate the clamp load and internal pressure condition on a gasket bolted joint. A sensor pad in combination with TEKSCAN equipment was used to capture the overall and local pressure distribution of the PIP gasket under various engine loading conditions. Then, the test results were compared with simulated results from computer models. Through the comparisons, it was found that gasket sealing pressure of test data and CAE data shows good correlations in all internal pressure cases when the bolt load was 500 N.
Technical Paper

Comprehensive Assessment of Gasoline Spray Robustness for Different Plume Arrangements

2024-04-09
2024-01-2620
Ensuring spray robustness of gasoline direct injection (GDI) is essential to comply with stringent future emission regulations for hybrid and internal combustion engine vehicles. This study presents experimental and numerical assessments of spray for lateral-mounted GDI sprays with two different plume arrangements to analyze spray collapse characteristics, which can significantly deteriorate the atomization performance of fuel sprays. Novel spray characterization methods are applied to analyze complex spray collapse behaviors using diffusive back-illuminated extinction imaging (DBIEI) and 3D computed tomographic (CT) image reconstruction. A series of computational fluid dynamics (CFD) simulations are performed to analyze the detailed spray characteristics besides experimental characterization. Spatio-temporal plume dynamics of conventional triangle-pattern spray are evaluated and compared to a plume pattern with an inversed T pattern that has more open space between plumes.
Journal Article

Computational Efficiency Improvements in Topography Optimization Using Reanalysis

2016-04-05
2016-01-1395
To improve fuel economy, there is a trend in automotive industry to use light weight, high strength materials. Automotive body structures are composed of several panels which must be downsized to reduce weight. Because this affects NVH (Noise, Vibration and Harshness) performance, engineers are challenged to recover the lost panel stiffness from down-gaging in order to improve the structure borne noise transmitted through the lightweight panels in the frequency range of 100-300 Hz where most of the booming and low medium frequency noise occurs. The loss in performance can be recovered by optimized panel geometry using beading or damping treatment. Topography optimization is a special class of shape optimization for changing sheet metal shapes by introducing beads. A large number of design variables can be handled and the process is easy to setup in commercial codes. However, optimization methods are computationally intensive because of repeated full-order analyses.
Technical Paper

Cycle-Averaged Heat Flux Measurements in a Straight-Pipe Extension of the Exhaust Port of an SI Engine

2006-04-03
2006-01-1033
This paper presents an experimental study of the cycle-averaged, local surface heat transfer, from the exhaust gases to a straight pipe extension of the exhaust port of a four-cylinder spark-ignition (SI) engine, over a wide range of engine operating conditions, from 1000 rpm, light load, through 4000 rpm, full load. The local steady-state heat flux was well correlated by a Nusselt-Reynolds number relationship that included entrance effects. These effects were found to be the major contributor to the local heat transfer augmentation. The Convective Augmentation Factor (CAF), which is defined as the ratio of the measured heat flux to the corresponding heat flux for fully-developed turbulent pipe flow, was found to decrease with increasing Reynolds number and increasing axial distance from the entrance of the test section.
Technical Paper

Defining the Boundary Conditions of the CFR Engine under MON Conditions, and Evaluating Chemical Kinetic Predictions at RON and MON for PRFs

2021-04-06
2021-01-0469
Expanding upon the authors’ previous work which utilized a GT-Power model of the Cooperative Fuels Research (CFR) engine under Research Octane Number (RON) conditions, this work defines the boundary conditions of the CFR engine under Motored Octane Number (MON) test conditions. The GT-Power model was validated against experimental CFR engine data for primary reference fuel (PRF) blends between 60 and 100 under standard MON conditions, defining the full range of interest of MON for gasoline-type fuels. The CFR engine model utilizes a predictive turbulent flame propagation sub-model, and a chemical kinetic solver for the end-gas chemistry. The validation was performed simultaneously for thermodynamic and chemical kinetic parameters to match in-cylinder pressure conditions, burn rate, and knock point prediction with experimental data, requiring only minor modifications to the flame propagation model from previous model iterations.
Technical Paper

Design and Optimization of a P4 mHEV Powertrain

2022-03-29
2022-01-0669
The EcoCAR Mobility Challenge (EMC) is the latest edition of the Advanced Vehicle Technology Competition (AVTC) series sponsored by the US Department of Energy. This competition challenges 11 North American universities to redesign a stock 2019 Chevrolet Blazer into an energy-efficient, SAE level 2-autonomous mild hybrid electric vehicle (mHEV) for use in the Mobility as a Service (MaaS) market. The Mississippi State University (MSU) team designed a P4 electric powertrain with an 85kW (113.99 HP) permanent magnet synchronous machine (PMSM) powered by a custom 5.4 kWh lithium-ion energy storage system. To maximize energy efficiency, Model Based Design concepts were leveraged to optimize the overall gear ratio for the P4 system. To accommodate this optimized ratio in the stock vehicle, a custom offset gearbox was designed that links the PMSM to the rear drive module.
Technical Paper

Design and Prototyping of Cleaning Systems for Cylinder Head and Engine Block Conveying Lines

2018-04-03
2018-01-1387
This paper presents the design of two cleaning systems following systems engineering design approach. An in situ cleaning system was designed for removing engine oil stains and metal swarf and shavings that adhere to rollers of conveying lines which convey cylinder head as well as other heavy engine components. The other system was to clear and collect metal debris accumulated in the grooves of an engine block internal assembly line. Prototypes were fabricated for the designed cleaning equipment for further testing and assessment. In the system engineering design process, preliminary, intermediate, and detailed design were conducted following an identification of the design problem, within that process a sequence of tasks such as synthesis, analysis, prototyping, and assessment were completed.
Technical Paper

Design and Validation of a GT Power Model of the CFR Engine towards the Development of a Boosted Octane Number

2018-04-03
2018-01-0214
Developments in modern spark ignition (SI) engines such as intake boosting, direct-injection, and engine downsizing techniques have demonstrated improved performance and thermal efficiency, however, these strategies induce significant deviation in end-gas pressure/temperature histories from those of the traditional Research and Motor Octane Number (RON and MON) standards. Attempting to extrapolate the anti-knock performance of fuels tested under the traditional RON/MON conditions to boosted operation has yielded mixed results in both SI and advanced compression ignition (ACI) engines. This consideration motivates the present work with seeks to establish a pathway towards the development of the test conditions of a boosted octane number, which would better correlate to fuel performance at high intake pressure conditions.
Technical Paper

Design of a Mild Hybrid Electric Vehicle with CAVs Capability for the MaaS Market

2020-04-14
2020-01-1437
There is significant potential for connected and autonomous vehicles to impact vehicle efficiency, fuel economy, and emissions, especially for hybrid-electric vehicles. These improvements could have large-scale impact on oil consumption and air-quality if deployed in large Mobility-as-a-Service or ride-sharing fleets. As part of the US Department of Energy's current Advanced Vehicle Technology Competition (AVCT), EcoCAR: The Mobility Challenge, Mississippi State University’s EcoCAR Team is redesigning and doing the development work necessary to convert a conventional gasoline spark-ignited 2019 Chevy Blazer into a hybrid-electric vehicle with SAE Level 2 autonomy. The target consumer segments for this effort are the Mobility-as-a-Service fleet owners, operators and riders. To accomplish this conversion, the MSU team is implementing a P4 mild hybridization strategy that is expected to result in a 30% increase in fuel economy over the stock Blazer.
Journal Article

Design of a Series-Parallel Plug-in Hybrid Sedan through Modeling and Simulation

2012-09-10
2012-01-1768
EcoCAR 2: Plugging In to the Future is a three-year design competition co-sponsored by General Motors and the Department of Energy. Mississippi State University has designed a plug-in hybrid powertrain for a 2013 Chevrolet Malibu vehicle platform. This vehicle will be capable of 57 miles all-electric range and utility-factor corrected fuel economy of greater than 80 miles per gallon gasoline equivalent (mpgge). All modifications are designed without sacrificing any of the vehicle's utility or performance. Advanced modeling, simulation, and Hardware-in-the-Loop (HIL) simulation capabilities are being used for rapid control prototyping and vehicle design to ensure success in the following years of the competition.
Technical Paper

Development of a Novel Test System to Determine the Durability of RTV Gasket Material

2020-04-14
2020-01-1069
This paper describes a laboratory-based test system and procedure for determining the durability of RTV sealant with fretting movement. A test machine is described in which shear and tensile stress-generating displacements at room temperature and temperature of 100°C are produced to load an RTV seal. The test system utilizes an air pressurized hollow cylinder with a cap sealed by RTV sealant on a reciprocating test rig. An external air leakage monitoring system detects the health of the tested RTV seal. When air leakage occurs, the seal is determined to have failed. RTV sealant used in the test was fully cured at room temperature and then aged with engine oil. In the experiments, a total of 6 displacements were used to generate cycle/amplitude graphs for both shear and tensile modes. Failures were determined to be caused by the loss of adhesion in tensile mode, and by crack nucleation due to the special step design in shear mode.
X