Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Estimation of Wet Clutch Friction Parameters in Automotive Transmissions

2015-04-14
2015-01-1146
In this paper, a new algorithm for the off-line estimation of wet clutch friction parameters is proposed for automotive transmissions, motivated by the usefulness of such an algorithm for diagnosing the condition of the clutch and transmission fluid in service. We assume that clutch pressure is measured, which is the case in dual clutch transmissions (DCT). The estimation algorithm uses measured rotational speeds and estimated accelerations at the input and output sides of a clutch, measured clutch pressures, and a simplified dynamic model of clutch friction to estimate the viscous and contact components of clutch friction torque. Coefficient of friction data is generated using the contact friction torque. A Stribeck friction model is fit to the data, and parameters in the model are then calculated by applying linear least squares estimation.
Technical Paper

Modeling, Control, and Adaptation for Shift Quality Control of Automatic Transmissions

2019-04-02
2019-01-1129
The parameters determining shift quality control in automatic transmissions are determined as part of the calibration of the transmission control. The resulting control system typically has three components: feedforward control, where the control output is determined before a gearshift; feedback control, where the control output is determined during the gearshift based on sensed feedback; and learning control (adaptation), where the feedforward or feedback controller parameters are modified after the current gearshift has ended and before the next similar gearshift begins. Gearshifts involving the same ratio change are referred to here as similar gearshifts, though such gearshifts may involve differences in other variables such as vehicle speed or engine torque.
Technical Paper

Transmission Clutch Pressure Control System: Modeling, Controller Development and Implementation

2000-03-06
2000-01-1149
This paper describes the modeling, controller development, and implementation of a transmission clutch pressure control system. A nonlinear analytical model for the clutch pressure control system is developed and implemented using Matlab/Simulink, and validated by experimental data. The dominant dynamics are identified via model analysis, and a linear model is derived for controller design. Openloop (feedforward) and closed loop (feedback) pressure control strategies are designed and implemented in a test setup. Experimental results show that the combined feedforward and feedback control gives superior performance as compared to feedforward control alone.
X