Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Effects of Thermal and Auxiliary Dynamics on a Fuel Cell Based Range Extender

2018-04-03
2018-01-1311
Batteries are useful in Fuel Cell Hybrid Electric Vehicles (FCHEV) to fulfill transient demands and for regenerative braking. Efficient energy management strategies paired with optimal powertrain design further improves the efficiency. In this paper, a new methodology to simultaneously size the propulsive elements and optimize the power-split strategy of a Range Extended Battery Electric Vehicle (REBEV), using a Polymer Electron Membrane Fuel Cell (PEMFC), is proposed and preliminary studies on the effects of the driving mission profile and the auxiliary power loads on the sizing and optimal performance of the powertrain design are carried out. Dynamic Programming is used to compute the optimal energy management strategy for a given driving mission profile, providing a global optimal solution.
Technical Paper

Optimizing Battery Cooling System for a Range Extended Electric Truck

2019-04-02
2019-01-0158
Battery packs used in electrified automotive powertrains support heavy electrical loads resulting in significant heat generation within them. Cooling systems are used to regulate the battery pack temperatures, helping to slow down battery aging. Vehicle-level energy consumption simulations serve as a first step for determining the specifications of a battery cooling system based on the duty cycle and interactions with the rest of the powertrain. This paper presents the development of a battery model that takes into account the energy impact of heating in the battery and demonstrates its use in a vehicle-level energy consumption simulator to set the specifications of a suitable cooling system for a vehicle application. The vehicle application used in this paper is a Class 6 Pickup and Delivery commercial vehicle with a Range-Extended Electric Vehicle (REEV) powertrain configuration.
X