Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

A Comparative Study between Physics, Electrical and Data Driven Lithium-Ion Battery Voltage Modeling Approaches

2022-03-29
2022-01-0700
This paper benchmarks three different lithium-ion (Li-ion) battery voltage modelling approaches, a physics-based approach using an Extended Single Particle Model (ESPM), an equivalent circuit model, and a recurrent neural network. The ESPM is the selected physics-based approach because it offers similar complexity and computational load to the other two benchmarked models. In the ESPM, the anode and cathode are simplified to single particles, and the partial differential equations are simplified to ordinary differential equations via model order reduction. Hence, the required state variables are reduced, and the simulation speed is improved. The second approach is a third-order equivalent circuit model (ECM), and the third approach uses a model based on a Long Short-Term Memory Recurrent Neural Network (LSTM-RNN)). A Li-ion pouch cell with 47 Ah nominal capacity is used to parameterize all the models.
Technical Paper

A Comparison New Car Assessment Program NCAP Requirements and Procedures Around the World

2013-10-07
2013-36-0499
The New Car Assessment Program (NCAP), introduced in 1979 by the U.S. National Highway Traffic Safety Administration, is a vehicle safety rating system that conducts crash test and provides motoring consumers with an assessment of the safety performance of new cars. Similar programs were then developed around the world, initially for Europe (EuroNCAP), Australia (ANCAP), Japan (JNCAP), China (CNCAP) and Korea (KNCAP). NCAP most recently reached Latin America (LatinNCAP) and Southeast Asia (AseanNCAP). Although the roots are similar, many NCAP programs have significant differences on the test procedures and rating schemes. This paper is a comparative analysis of the recent NCAP protocols to highlight the most important technical differences.
Journal Article

A Comparison of Spray-Guided Stratified-Charge Combustion Performance with Outwardly-Opening Piezo and Multi-Hole Solenoid Injectors

2011-04-12
2011-01-1217
This investigation was aimed at measuring the relative performance of two spray-guided, single-cylinder, spark-ignited direct-injected (SIDI) engine combustion system designs. The first utilizes an outwardly-opening poppet, piezo-actuated injector, and the second a conventional, solenoid operated, inwardly-opening multi-hole injector. The single-cylinder engine tests were limited to steady state, warmed-up conditions. The comparison showed that these two spray-guided combustion systems with two very different sprays had surprisingly close results and only differed in some details. Combustion stability and smoke emissions of the systems are comparable to each other over most of the load range. Over a simulated Federal Test Procedure (FTP) cycle, the multi-hole system had 15% lower hydrocarbon and 18% lower carbon monoxide emissions.
Journal Article

A Computational Method for Efficient Hub Offset Comparisons with Deflected-Disc Dampers

2013-04-08
2013-01-1357
With deflected-disc dampers, digressive force-velocity shapes are achieved via the combined effects of disc stack stiffness and hub-offset. The degree of digressiveness can be adjusted to alter vehicle performance by changing the proportion of these parameters. Optimizing this relationship can yield substantial vehicle performance improvements, but the time consuming iterative process of developing a new disc stack for each hub-offset discourages experimentation. To enable more efficient digressiveness comparisons, a regression-based computational method has been developed which converts disc stack stiffness from one hub-offset to other offsets directly, without iteration. Once an initial disc stack for one offset has been tuned by traditional methods, stacks for other offsets can be calculated that maintain overall damper control.
Technical Paper

A Constant Radius Constant Speed Simulation Methodology-Yaw Rate Control

2011-04-12
2011-01-0738
A simulation methodology is developed for the Constant Radius Constant Speed (CRCS) analysis to predict the ISO4138 [1] road test performance. The CRCS analysis can be used to predict the vehicle steady-state handling characteristics such as understeer, rear cornering compliance, and roll gradient, etc. The Yaw-Rate Control methodology is applied to replace the traditional driver-in-the-loop path-following approaches. Comparing to the path-following approaches, the proposed method is simpler to use, more efficient, accurate, and robust.
Journal Article

A Demonstration of Local Heat Treatment for the Preform Annealing Process

2011-04-12
2011-01-0538
The preform annealing process is a two-stage stamping method for shaping non age-hardenable (i.e. 5000 series) aluminum sheet panels in which the panel is heat treated in between the two steps to improve overall formability of the material. The intermediate annealing heat treatment eliminates the cold work accumulated in the material during the first draw. The process enables the ability to form more complex parts than a conventional aluminum stamping process. A demonstration of local annealing for this process was conducted to form a one-piece aluminum liftgate inner panel for a large sport utility vehicle using the steel product geometry without design concessions. In prior work, this process was demonstrated by placing the entire panel in a convection oven for several minutes to completely anneal the cold work.
Technical Paper

A Displacement-Approach for Liftgate Chucking Investigation

2012-04-16
2012-01-0217
A displacement-based CAE analysis is applied to liftgate chucking noise problems. A CAE simulation model of a small-size sport utility vehicle (SUV) is simulated with a set of realistic road loads as a time transient simulation. The model contains a trimmed vehicle, a liftgate and structural body-liftgate interface components such as the latch-striker wire, contact wedges and slam bumpers. Simulation design of experiments (DOE) is carried out with the model. As performance measures, the relative displacements at the contact points of the interface components are selected, since they are considered the direct cause of liftgate chucking. As design variables, body structure stiffness, liftgate stiffness, liftgate opening stiffness, stiffness characteristics of the interface components and additional liftgate mass are selected. Results of the simulation DOE is post-processed, and response surface models (RSM) are fit for the performance measures.
Technical Paper

A Dual Clutch Torque Converter for Dual Input Shaft Transmissions

2013-04-08
2013-01-0232
This paper presents an alternative launch device for layshaft dual clutch transmissions (DCT's). The launch device incorporates a hydrodynamic torque converter, a lockup clutch with controlled slip capability and two wet multi-plate clutches to engage the input shafts of the transmission. The device is intended to overcome the deficiencies associated with using conventional dry or wet launch clutches in DCT's, such as limited torque capacity at vehicle launch, clutch thermal capacity and cooling, launch shudder, lubricant quality and requirement for interval oil changes. The alternative device enhances drive quality and performance at vehicle launch and adds the capability of controlled capacity slip to attenuate gear rattle without early downshifting. Parasitic torque loss will increase but is shown not to drastically influence fuel consumption compared to a dry clutch system, however synchronizer engagement can become a concern at cold operating temperatures.
Technical Paper

A Fatigue Prediction Method for Spot Welded Joints

2013-04-08
2013-01-1208
Generally linear finite element analysis (FEA) is used to predict fatigue life of spot welded joints in a vehicle body structure. Therefore, the effect of plastic deformation at the vicinity of the spot welded joints is not included on fatigue prediction. This study introduces a simple technique to include the plastic deformation effect without performing elastic-plastic finite element analysis. The S-N curve obtained from fatigue test results is modified to consider this effect. Tensile strength test results of spot welded joint specimens were utilized to find the load range for FEA equivalent to the applied load range for fatigue tests. To demonstrate the proposed approach, fatigue test results of advanced high strength steels (AHSS) for lap-shear and coach peel specimens were used. Both the specimen types were tested at various constant amplitudes with the load ratios of R=0.1 and 0.3.
Technical Paper

A Framework for Model Based Detection of Misfire in a Gasoline Engine with Dynamic Skip Fire

2019-04-02
2019-01-1288
A framework is proposed for model-based misfire detection in gasoline engines with dynamic skip fire by employing a novel control oriented engine model. The model-based techniques form compact description of plant behavior and have a number of well known benefits. The performance requirements and environment legislation resulted in a rigorous research on misfire detection due to which an extensive literature can be found for the problem of misfire detection in all-cylinder firing gasoline engines. Since there is no fix cylinder activation/de-activation sequence in dynamic skip fire engines. So, the problem of misfire detection in dynamic skip fire engines departs from its trivial nature. In the proposed framework, ‘cylinder skip sequence’ is also fed to the engine model along-with conventional engine inputs. The First Principle based Engine Model constructs the crankshaft angular speed fluctuation pattern for a given cylinder skip sequence.
Journal Article

A Method of Frequency Content Based Analysis of Driving Braking Behavior

2015-04-14
2015-01-1564
Typically, when one thinks of advanced driver assistance systems (ADAS), systems such as Forward Collision Warning (FCW) and Collision Imminent Braking (CIB) come to mind. In these systems driver assistance is provided based on knowledge about the subject vehicle and surrounding objects. A new class of these systems is being implemented. These systems not only use information on the surrounding objects but also use information on the driver's response to an event, to determine if intervention is necessary. As a result of this trend, an advanced level of understanding of driver braking behavior is necessary. This paper presents an alternate method of analyzing driver braking behavior. This method uses a frequency content based approach to study driver braking and allows for the extraction of significantly more data from driver profiles than traditionally would have been done.
Technical Paper

A Methodology for Evaluating Body Architecture Concepts Using Technical Cost Modeling

2011-04-12
2011-01-0767
The ability to make accurate decisions concerning early body-in-white architectures is critical to an automaker since these decisions often have long term cost and weight impacts. We address this need with a methodology which can be used to assist in body architecture decisions using process-based technical cost modeling (TCM) as a filter to evaluate alternate designs. Despite the data limitations of early design concepts, TCM can be used to identify key trends for cost-effectiveness between design variants. A compact body-in-white architecture will be used as a case study to illustrate this technique. The baseline steel structure will be compared to several alternate aluminum intensive structures in the context of production volume.
Technical Paper

A Methodology for Threat Assessment in Cut-in Vehicle Scenarios

2021-04-06
2021-01-0873
Advanced Driver Assistance System (ADAS) has become a common standard feature assisting greater safety and fuel efficiency in the latest automobiles. Yet some ADAS systems fail to improve driving comfort for vehicle occupants who expect human-like driving. One of the more difficult situations in ADAS-assisted driving involves instances with cut-in vehicles. In vehicle control, determining the moment at which the system recognizes a cut-in vehicle as an active target is a challenging task. A well-designed comprehensive threat assessment developed for cut-in vehicle driving scenarios should eliminate abrupt and excessive deceleration of the vehicle and produce a smooth and safe driving experience. This paper proposes a novel methodology for threat assessment for driving instances involving a cut-in vehicle. The methodology takes into consideration kinematics, vehicle dynamics, vehicle stability, road condition, and driving comfort.
Technical Paper

A Multidisciplinary Numerical Modeling Tool Integrating CFD and Thermal System Simulation for Automotive HVAC System Design

2012-04-16
2012-01-0644
A multidisciplinary toolset integrating ANSYS FLUENT CFD solver and GM in-house thermal system design tool - e-Thermal has been developed to design automotive HVAC systems. This toolset utilizes COM software interface standard of MS Windows for inter-process communication at simulation run-time to synchronize the two applications and to exchange data. In this report, first, the implementation of this fully transient, coupled method between FLUENT CFD and e-Thermal is introduced. We then apply this integrated tool to simulate a transient A/C operating cycle including hot-soak and cool-down of a cabin. The coupled simulation consists of an A/C and an Air-Handling (HVAC module) system models, and a cabin CFD model. It demonstrates that the coupled method can simulate fully transient HVAC system operations in a vehicle.
Technical Paper

A Numerical Approach to Evaluate the Aerodynamic Performance of Vehicle Exterior Surfaces

2011-04-12
2011-01-0180
This paper outlines a process to assess the aerodynamic performance of different vehicle exterior surfaces. The initial section of the paper summarizes the details of white-light scanning process that maps entire vehicle to points in Cartesian co-ordinate system which is followed by the conversion of scanned points to theme surface. The concept of point-cloud modeling is employed to generate a smooth theme surface from scanned points. Theme surfaces thus developed are stitched to under-body/under-hood (UB/UH) parts of the base vehicle and the numerical simulations were carried out to understand the aerodynamic efficiency of the surfaces generated. Specifics of surface/volume mesh generated, boundary conditions imposed and numerical scheme employed are discussed in detail. Flow field over vehicle exterior is thoroughly analyzed. A comparison study highlighting the effect of front grilles in unblocked condition along with air-dam on flow field has been provided.
Journal Article

A Numerical Study of Trailing Edge Serrations on Sunroof Buffeting Noise Reduction

2017-03-28
2017-01-0441
A numerical study on sunroof noise reduction is carried out. One of the strategies to suppress the noise is to break down the strong vortices impinging upon the trailing edge of the sunroof into smaller eddies. In the current study, a serrated sunroof trailing edge with sinusoidal profiles of wavelengths is investigated for the buffeting noise reduction. A number of combinations of wavelengths and amplitudes of sinusoidal profiles is employed to examine the effects of trailing edge serrations on the noise reduction. A generic vehicle model is used in the study and a straight trailing edge is considered as a baseline. The results indicate that the trailing edge serration has a significant impact on the sound pressure level (SPL) in the vehicle cabin and it can reduce the SPL by up to 10~15 dB for the buffeting frequency.
Technical Paper

A Physically-Based, Lumped-Parameter Model of an Electrically-Heated Three-Way Catalytic Converter

2012-04-16
2012-01-1240
The impact of cold-start emissions is well known on conventional and hybrid electric vehicles. Plug-in electric vehicles offer a unique challenge in that there are opportunities for prolonged engine-off conditions which can lead to catalyst cooling and elevated emissions on engine re-start. This research investigates the development and validation of a system for controlling emissions under these conditions, with an emphasis on a catalytic converter model used for design and analysis. The model is a one-dimensional, lumped-parameter model of a three-way catalytic converter developed in Matlab/Simulink. The catalyst is divided into discrete, axial elements and each discrete element contains states for the temperatures of the gas, substrate, and can wall. Heat transfer mechanisms are modeled from physics-based equations.
Technical Paper

A Physics-Based, Control-Oriented Turbocharger Compressor Model for the Prediction of Pressure Ratio at the Limit of Stable Operations

2019-04-02
2019-01-0320
Downsizing and boosting is currently the principal solution to reduce fuel consumption in automotive engines without penalizing the power output. A key challenge for controlling the boost pressure during highly transient operations lies in avoiding to operate the turbocharger compressor in its instability region, also known as surge. While this phenomenon is well known by control engineers, it is still difficult to accurately predict during transient operations. For this reason, the scientific community has directed considerable efforts to understand the phenomena leading to the onset of unstable behavior, principally through experimental investigations or high-fidelity CFD simulations. On the other hand, less emphasis has been placed on creating control-oriented models that adopt a physics-based (rather than data-driven) approach to predict the onset of instability phenomena.
Technical Paper

A Rule-Based Control for Fuel-Efficient Automotive Air Conditioning Systems

2015-04-14
2015-01-0366
In a conventional passenger vehicle, the AC system is the largest ancillary load. This paper proposes a novel control strategy to reduce the energy consumption of the air conditioning system of a conventional passenger car. The problem of reducing the parasitic load of the AC system is first approached as a multi-objective optimization problem. Starting from a validated control-oriented model of an automotive AC system, an optimization problem is formalized to achieve the best possible fuel economy over a regulatory driving cycle, while guaranteeing the passenger comfort in terms of cabin temperature and reduce the wear of the components. To complete the formulation of the problem, a set of constraints on the pressure in the heat exchanger are defined to guarantee the safe operation of the system. The Dynamic Programming (DP), a numerical optimization technique, is then used to obtain the optimal solution in form of a control sequence over a prescribed driving cycle.
Technical Paper

A Safety and Security Testbed for Assured Autonomy in Vehicles

2020-04-14
2020-01-1291
Connectivity and autonomy in vehicles promise improved efficiency, safety and comfort. The increasing use of embedded systems and the cyber element bring with them many challenges regarding cyberattacks which can seriously compromise driver and passenger safety. Beyond penetration testing, assessment of the security vulnerabilities of a component must be done through the design phase of its life cycle. This paper describes the development of a benchtop testbed which allows for the assurance of safety and security of components with all capabilities from Model-in-loop to Software-in-loop to Hardware-in-loop testing. Environment simulation is obtained using the AV simulator, CARLA which provides realistic scenarios and sensor information such as Radar, Lidar etc. MATLAB runs the vehicle, powertrain and control models of the vehicle allowing for the implementation and testing of customized models and algorithms.
X