Refine Your Search

Search Results

Viewing 1 to 7 of 7
Technical Paper

Attainment of High Thermal Efficiency and Near-zero Emissions by Optimizing Injected Spray Configuration in Direct Injection Hydrogen Engines

2019-12-19
2019-01-2306
The authors have previously proposed a plume ignition and combustion concept (i.e., PCC combustion), in which a hydrogen fuel is directly injected to the combustion chamber in the latter half of compression stroke and forms a richer mixture plume. By combusting the plume, both cooling losses and NOx formation are reduced. In this study, thermal efficiency was substantially improved and NOx formation was reduced with PCC combustion by optimizing such characteristics as direction and diameter of the jets in combination with combustion of lean mixture. Output power declined due to the lean mixture, however, was recovered by supercharging while keeping NOx emissions at the same level. Thermal efficiency was further improved by slightly re-optimizing the jet conditions.
Technical Paper

Effect of Hydrogen Concentration on Engine Performance, Exhaust Emissions and Operation Range of PREMIER Combustion in a Dual Fuel Gas Engine Using Methane-Hydrogen Mixtures

2015-09-01
2015-01-1792
A single cylinder, supercharged dual fuel gas engine with micro-pilot fuel injection is operated using methane only and methane-hydrogen mixtures. Methane only experiments were performed at various equivalence ratios and equivalence ratio of 0.56 is decided as the optimum operating condition based on engine performance, exhaust emissions and operation stability. Methane-hydrogen experiments were performed at equivalence ratio of 0.56 and 2.6 kJ/cycle energy supply rate. Results show that indicated mean effective pressure is maintained regardless of hydrogen content of the gaseous fuel while thermal efficiency is improved and presence of hydrogen reduces cyclic variations. Increasing the fraction of hydrogen in the fuel mixture replaces hydrocarbon fuels and reduces carbon monoxide and hydrocarbon emissions.
Technical Paper

Gas Temperature Measurement in a DME-HCCI Engine using Heterodyne Interferometry with Spark-Plug-in Fiber-Optic Sensor

2007-07-23
2007-01-1848
Non-intrusive measurement of transient unburned gas temperatures was developed with a fiber-optic heterodyne interferometry system. Using the value of the Gladstone-Dale constant for DME gas and combustion pressure we can calculate the in-cylinder temperature inside unburned and burned region. In this experimental study, it was performed to set up a fiber-optic heterodyne interferometry technique to measure the temperature before and behind the combustion region in a DME-HCCI engine. At first, measured temperature was almost the same as the temperature history assuming that the process that changes of the unburned and the burned are polytropic. In addition, we measured the temperature after combustion which of condition was burned gas with DME-HCCI combustion. The developed heterodyne interferometry used the spark-plug-in fiber-optic sensor has a good feasibility to measure the unburned and burned temperature history.
Technical Paper

In-spark-plug Sensor for Analyzing the Initial Flame and Its Structure in an SI Engine

2005-04-11
2005-01-0644
An in-spark-plug flame sensor was developed to measure local chemiluminescence near the spark gap in a practical spark-ignition (SI) engine in order to study the development of the initial flame kernel, flame front structure, transient phenomena, and the correlation between the initial flame kernel structure and cyclic variation in the flame front structure, which influences engine performance directly. The sensor consists of a commercial instrumented spark plug with small Cassegrain optics and an optical fiber. The small Cassegrain optics were developed to measure the local chemiluminescence intensity profile and temporal history of OH*, CH*, and C2* at the flame front formed in a turbulent premixed flame in an SI engine. A highresolution monochromator with an intensified chargecoupled device (ICCD) and spectroscopy using optical filters and photomultiplier tubes (PMTs) were used to measure the time-series of the three radicals, as well as the in-cylinder pressure.
Technical Paper

Mixture Formation Process in a Spark-Ignition Engine with Ethanol Blended Gasoline

2009-06-15
2009-01-1957
In this study, fuel concentration measurements in a spark-ignition (SI) engine with ethanol blended gasoline were carried out using an optical sensor installed in the spark plug with laser infrared absorption technique. The spark plug sensor for in-situ fuel concentration measurement was applied to a port injected SI engine. The molar absorption coefficients of ethanol blended gasoline were determined for various pressures and temperatures in advance using a constant volume vessel with electric heating system. Ethanol blended gasoline with high volumetric ratios shows lower molar absorption coefficients due to lower molar absorption coefficients of ethanol. The molar absorption coefficients of ethanol blended gasoline can be estimated by considering the molar fraction of each component.
Technical Paper

Transient Temperature Measurement of Gas Using Fiber Optic Heterodyne Interferometry

2001-05-07
2001-01-1922
A fiber optical heterodyne interferometry system was developed to obtain high temporal resolution temperature histories of unburned and burned gases non-intrusively. The effective optical path length of the test beam changes with the gas density and corresponding changes of the refractive index. Therefore, the temperature history of the gas can be determined from the pressure and phase shift of the interference signal. The resolution of the temperature measurement is approximately 0.5 K, and is dependent upon both the sampling clock speed of the A/D converter and the length of the test section. A polarization-preserving fiber is used to deliver the test beam to and from the test section, to improve the feasibility of the system as a sensor probe. This optical heterodyne interferometry system may also be used for other applications that require gas density and pressure measurements with a fast response time, or a transient temperature record.
Technical Paper

Transient Temperature Measurement of Unburned Gas in an Engine Cylinder Using Laser Interferometry with a Fiber-Optic Sensor

2003-05-19
2003-01-1799
A heterodyne interferometry system with a fiber-optic sensor was developed to measure the temperature history of unburned gas in an engine cylinder. A polarization-preserving fiber and metal mirror were used as the fiber-optic sensor to deliver the test beam to and from the measurement region. This fiber-optic sensor can be assembled in the engine cylinder or the cylinder head without a lot of improvements of an actual engine. The feasibility of our system was sufficient to be applied to temperature history measurement of an unburned gas compressed by flame propagation in an engine cylinder. The resolution of the temperature measurement is approximately 0.7 K, and is dependent on both the sampling clock speed of the A/D converter and the length of the measurement region.
X