Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Multi-Step Discharge/Catalyst Processing of NOx in Synthetic Diesel Exhaust

2001-09-24
2001-01-3510
In the discharge-catalyst treatment of diesel exhaust the discharge chemistry is known to oxidize NO to NO2 as well as to produce partially oxidized hydrocarbons for the heterogeneous reduction step. We find NO2 to be much more easily reduced to N2 on our catalysts, as long as there is a sufficient supply of reductant present. Unfortunately we typically find that a fraction of the NO2 is only partially reduced back to NO. Since much of the original hydrocarbon survives both the plasma and our catalyst, a subsequent stage of plasma will oxidize NO back to NO2 while at the same time replenishing the supply of partially oxidized hydrocarbon for another stage of heterogeneous catalysis. We present experimental evidence illustrating the advantages of multi-step discharge-catalyst treatment of NOx in simulated diesel exhaust.
Technical Paper

Selective Reduction of NOx in Oxygen Rich Environments with Plasma-Assisted Catalysis: The Role of Plasma and Reactive Intermediates

2001-09-24
2001-01-3513
The catalytic activity of selected materials (BaY and NaY zeolites, and γ-alumina) for selective NOx reduction in combination with a non-thermal plasma was investigated. Our studies suggest that aldehydes, formed during the plasma treatment of simulated diesel exhaust, are the important species for the reduction of NOx to N2. Indeed, all materials that are active in plasma-assisted catalysis were found to be very effective for the thermal reduction of NOx in the presence of aldehydes. For example, the thermal catalytic activity of a BaY zeolite with aldehydes gives 80-90% NOx removal at 250°C with 200ppm NOx at the inlet and a VHSV=12,000 h-1. The hydrocarbon reductants, n-octane and 1-propyl alcohol, have also shown high thermal catalytic activity for NOx removal over BaY, NaY and γ-alumina.
X